China best Helical Gear worm gear motor

Product Description

CITICIC is the casting & forging center in central-south China, possessing 50t electric arc furnace, 60t LF ladle refining furnace, and 60t VD/VOD refining furnace, etc. We can pour 350t liquid steel 1 time and yields more than 200,000t of high quality liquid steel and can produce the high quality steel of more than 260 steel grades such as carbon steel, structural alloy steel and the structural steel, refractory steel and stainless steel of special requirement. The maximum weight of casting, gray casting, graphite cast iron and non-ferrous casting is 200t, 30t, 20t and 205t separately.

 

Features:

Module Range: 10 Module to 70 Module.

Diameter: Min 800mm to16000 mm.

Weight: Max 120 MT single piece.

Three different designs: Fabricated steel – forged ring – rolled plate

Standards / Certificates: • CHINAMFG EN ISO • AWS • ASTM • ASME • DIN

 

 

Advantages:

– Products with Customers’ Designs

– Strong Machining & Heat Treatment Abilities

– Strict Quality Control

– Prompt Delivery

– Experience in Cooperation with Fortune 500 Companies

 

Process:

Forging / Casting

Normalizing & Tempering-Proof Machining

Quenching & Tempering

Finish Machining (Teeth Grinding)

 

 

We can offer you in various process conditions solutions for Many End Markets and Applications

–Mining

–Metallurgy

–Power Generation

–Sugar

–Cement Plant

–Port Machinery

–Oil and natural

–Papermaking

–OEM gear case

–General Industrial

 

 

Specifications Of Gear:

No.

Item

Description

1

Diameter

≤15m

2

Module

≤45

3

Material

Cast Alloy Steel, Cast Carbon Steel, Forged Alloy Steel, Forged Carbon Steel

4

Structure From

Integrated, Half to Half, Four Pieces and More Pieces

     

5

Heat Treatment

Quenching & Tempering, Normalizing & Tempering, Carburizing & Quenching & Tempering

     

6

Tooth Form

Annular Gear, Outer Gear Ring

7

Standard

ISO, EN, DIN, AISI, ASTM, JIS, IS, GB

 

Inspection And Test Outline Of Girth Gear:

No.

Item

Inspection Area

Acceptance Criteria

Inspection Stage

Certificates

1

Chemical 
Composition

Sample

Material Requirement

When Smelting
After Heat Treatment

Chemical Composition 
Report

2

Mechanical
Properties

Sample (Test Bar on the Gear Body)

Technical Requirement

After Heat Treatment

Mechanical Properties 
Report

3

Heat 
Treatment

Whole Body

Manufacturing Standard

During Heat Treatment

Heat Treatment Report
Curves of Heat 
Treatment

4

Hardness 
Test

Tooth Surface, 3 Points Per 90°

Technical Requirement

After Heat Treatment

Hardness Teat Report

After Semi Finish 
Machining

         

5

Dimension 
Inspection

Whole Body

Drawing

After Semi Finish

Machining

Dimension Inspection 
Report

Finish Machining

         

6

Magnetic Power Test (MT)

Tooth Surface

Agreed Standard

After Finish Gear 
Hobbing

MT Report

7

UT

Spokes Parts

Agreed Standard

After Rough Machining

UT Report

After Welded

         

After Semi Finish 
Machining

         

8

PT

Defect Area

No Defect Indicated

After Digging
After Welded

PT Record

9

Mark Inspection

Whole Body

Manufacturing Standard

Final Inspection

Pictures

10

Appearance Inspection

Whole Body

CIC’s Requirement

Before Packing (Final Inspection)

 

11

Anti-rust 
Inspection

Whole Body

Agreed Anti-rust Agent

Before Packing

Pictures

12

Packing 
Inspection

Whole Body

Agreed Packing Form

During Packing

Pictures

 

Facilities For Manufacturing Gear Ring:

No

Item

Description

1

Smelting & Casting Capability

40t, 50t, 80t Series AC Electric Arc Furnace
2×150t, 60t LF Ladle Refining Furnace
150t, 60t Series VD / VOD Furnace
20×18m Large Pouring Facility

We can pour 900t refining liquid steel 1 time, and achieve vacuum poured 600t steel ingots.

We can produce the high quality steel of more than 260 steel grades as carbon steel, structural alloy steel and the structural steel, refractory steel and stainless steel of special requirement. 

The maximum weight of casting steel, gray casting, graphite cast iron and non-ferrous casting is 600t, 200t, 150t and 20t separately.

2

Forging Capability

The only 1 in the word, the most technologically advanced and the largest 
specification18500t Oil Press, equipped with 750t.m forging operation machine
8400t Water Press
3150t Water Press
1600t Water Press
Φ5m High Precision Ring Mill (Germany)
Φ12m High Precision Ring Mil
We can roll rings of different sections of carbon steel, alloy steel, high temperature alloy steel and non-ferrous alloys such as copper alloy, aluminum alloy and titanium alloy. 
Max. Diameter of rolled ring will be 12m.

3

Heat Treatment Capability

9×9×15m, 8×8×12m, 6×6×15m, 15×16×6.5m, 16×20×6m, 7×7×17m Series Heat CHINAMFG and Heat Treatment Furnaces

φ2.0×30m, φ3.0×5.0m Series Heat Treatment Furnaces
φ5.0×2.5m, φ3.2×1.5m, φ3.0×5.0m, φ2.0×5m Series Carburizing Furnaces &
Nitriding Furnaces & Quenching Bathes
φ2.0×30m Well Type CNC Electrical Furnaces
Φ3.0×5.0M Horizontal Gas Temperature-differential Furnace
Double-frequency and Double-position Quenching Lathe of Pinion Shaft

4

Machining Capability

1. ≥5m CNC Heavy Duty Vertical Lathes

12m CNC Double-column Vertical Lathe
10m CNC Double-column Vertical Lathe
10m CNC Single-column Vertical Lathe
6.3m Heavy Duty Vertical Lathe
5m CNC Heavy Duty Vertical Lathe

 

2. ≥5m Vertical Gear Hobbing Machines
15m CNC Vertical Gear Hobbing Machine
10m Gear Hobbing Machine
8m Gear Hobbing Machine
5m Gear Hobbing Machine
3m Gear Hobbing Machining

 

3. Imported High-precision Gear Grinding Machines
0.8m~3.5m CNC Molding Gear Grinding Machines

 

4. Large Boring & Milling Machines
220 CNC Floor-mounted Boring & Milling Machine
200 CNC Floor-mounted Boring & Milling Machine
160 CNC Floor-mounted Boring & Milling Machine

 

Application: Industry
Hardness: According to Customers′ Requirements
Manufacturing Method: Cast Gear, Forged Gear
Toothed Portion Shape: Spur Gear
Material: Cast Steel, Forged Steel
Type: Circular Gear
Customization:
Available

|

Customized Request

helical gear

What is the purpose of using helical gears in power transmission?

Helical gears are commonly used in power transmission systems for various purposes. Here’s a detailed explanation of the purpose and advantages of using helical gears in power transmission:

  • Smooth and Efficient Power Transfer: One of the primary purposes of using helical gears in power transmission is to achieve smooth and efficient transfer of power. The inclined tooth profile of helical gears allows for gradual and continuous engagement of teeth, minimizing shock loads and ensuring a more uniform distribution of force. This results in smoother power transmission with reduced noise, vibration, and wear.
  • High Torque Transmission: Helical gears are known for their high torque-carrying capacity. The inclined teeth of helical gears enable a larger tooth contact area compared to other gear types such as spur gears. This increased tooth contact area allows helical gears to transmit higher torque, making them suitable for applications that require the transfer of large amounts of power, such as in industrial machinery, automotive drivetrains, and heavy-duty equipment.
  • Variable Speed Ratios: Helical gears can be designed with different numbers of teeth and varying helix angles, allowing for a wide range of speed ratios. By selecting the appropriate combination of gears, the rotational speed and torque can be adjusted to meet the requirements of the power transmission system. This flexibility in speed ratios makes helical gears versatile in applications where variable speed control is necessary.
  • Reduction of Noise and Vibration: The inclined tooth profile and gradual engagement of helical gears contribute to the reduction of noise and vibration in power transmission systems. Compared to spur gears, helical gears generate less noise and vibration due to their smoother meshing characteristics and improved load distribution. This makes helical gears particularly beneficial in applications where noise reduction and smooth operation are important considerations, such as in automotive transmissions and precision equipment.
  • Compact Design: Helical gears can achieve high gear ratios within a relatively compact design. The inclined teeth of helical gears allow for more teeth to be in contact at any given time, enabling a higher gear ratio compared to spur gears of the same size. This compactness is advantageous when there are space constraints or when a smaller gear mechanism is desired without sacrificing performance or torque capacity.
  • High Reliability and Durability: Helical gears are designed to distribute the load over multiple teeth, resulting in improved load-carrying capacity and enhanced gear strength. The inclined tooth profile allows for a larger contact area, reducing stress concentrations and increasing the gear’s resistance to wear and fatigue. These factors contribute to the high reliability and durability of helical gears, making them suitable for demanding power transmission applications that require long service life.

In summary, the purpose of using helical gears in power transmission is to achieve smooth and efficient power transfer, high torque transmission, variable speed control, noise and vibration reduction, compact design, and high reliability. These advantages make helical gears widely used in various industries, including automotive, manufacturing, energy, and many other applications that require reliable and efficient power transmission.

helical gear

How do you address noise and vibration issues in a helical gear system?

In a helical gear system, addressing noise and vibration issues is crucial to ensure smooth and quiet operation, minimize component wear, and enhance overall system performance. Here’s a detailed explanation of how to address noise and vibration issues in a helical gear system:

  1. Proper Gear Design: The design of the helical gears can significantly impact noise and vibration levels. Design considerations such as the helix angle, tooth profile modification, and gear tooth contact pattern optimization can help minimize gear noise and vibration. A well-designed gear system with proper tooth geometry and accurate alignment reduces the likelihood of gear meshing irregularities that contribute to noise and vibration.
  2. Precision Manufacturing: High-quality manufacturing processes are essential to minimize noise and vibration in helical gear systems. Precise gear cutting techniques, such as hobbing or grinding, ensure accurate tooth profiles, which help reduce gear meshing deviations and associated noise. Additionally, maintaining tight manufacturing tolerances and surface finishes on gear components can help minimize vibration caused by irregularities or imperfections.
  3. Alignment and Assembly: Proper alignment and assembly of the helical gears are critical to minimize noise and vibration. Ensuring precise alignment of the gear shafts and gear meshing is essential to achieve optimal contact between the gear teeth. The use of alignment tools, such as dial indicators or laser alignment systems, can aid in achieving accurate alignment. Additionally, proper assembly techniques, including appropriate gear backlash and preload adjustment, can help minimize noise and vibration by optimizing gear meshing conditions.
  4. Optimal Lubrication: Proper lubrication is vital for reducing noise and vibration in a helical gear system. Adequate lubrication creates a thin film between the gear teeth, minimizing friction and wear. The lubricant also helps to dampen vibrations and dissipate heat generated during gear operation. Using the correct lubricant type, viscosity, and maintaining proper lubricant levels are essential for noise and vibration control.
  5. Stiffness of Gearbox Housing: The stiffness and rigidity of the gearbox housing influence noise and vibration levels in a helical gear system. A robust and well-designed housing structure helps to minimize the transmission of vibrations from the gears to the surrounding environment. It is important to ensure that the gearbox housing is adequately braced and supported to reduce resonances and vibrations that can contribute to noise.
  6. Vibration Damping: Implementing vibration damping techniques can help mitigate noise and vibration in a helical gear system. This can include the use of vibration-absorbing materials, such as elastomers or damping pads, at appropriate locations within the gear system. These materials help absorb and dissipate vibrations, reducing noise transmission and minimizing gear system resonance.
  7. Condition Monitoring and Maintenance: Regular condition monitoring and maintenance practices are essential for identifying and addressing noise and vibration issues in a helical gear system. Periodic inspections, including vibration analysis, can detect any abnormal vibration patterns or wear indications. Timely maintenance, such as addressing misalignment, worn components, or inadequate lubrication, can prevent further deterioration and reduce noise and vibration levels.

By implementing these measures, engineers can effectively address noise and vibration issues in a helical gear system, resulting in quieter operation, reduced component wear, and improved overall system performance.

helical gear

What is a helical gear and how does it work?

A helical gear is a type of cylindrical gear with teeth that are cut at an angle to the gear axis. It is widely used in various mechanical systems to transmit power and motion between parallel shafts. Here’s a detailed explanation of helical gears and their working principles:

A helical gear consists of a cylindrical shape with teeth that are cut in a helical pattern around the gear’s circumference. The teeth of a helical gear are not perpendicular to the gear axis but are instead aligned at an angle, forming a helix shape. This helix angle allows for gradual engagement and disengagement of the gear teeth, resulting in smoother and quieter operation compared to spur gears.

The working principle of a helical gear involves the transfer of rotational motion and power between parallel shafts. When two helical gears mesh together, their helical teeth gradually come into contact, causing a sliding action as the gears rotate. This sliding action creates both axial and radial forces on the teeth, resulting in a thrust load along the gear axis.

As the helical gears rotate, the sliding action between the teeth causes a force component along the gear axis. This axial force is responsible for generating the thrust load on the gear, which must be properly supported by suitable thrust bearings or other means to ensure smooth and efficient operation.

The helical gear design offers several advantages:

  1. Smooth and Quiet Operation: The helical teeth engagement allows for a gradual contact between the gear teeth, reducing impact and noise during operation. This results in smoother and quieter gear performance compared to spur gears.
  2. Increased Load-Carrying Capacity: The helical gear design provides greater tooth contact compared to spur gears. This increased contact area allows helical gears to transmit higher loads and handle greater torque without experiencing excessive wear or tooth failure.
  3. Parallel Shaft Operation: Helical gears are primarily used for transmitting power and motion between parallel shafts. By meshing two helical gears on parallel shafts, rotational motion can be efficiently transmitted from one shaft to the other with a constant speed ratio.
  4. Ability to Transmit Motion at Various Angles: While helical gears are commonly used for parallel shaft applications, they can also be used to transmit motion at non-parallel shaft angles by using a combination of helical gears or by incorporating additional components such as bevel gears.

It is important to consider a few factors when using helical gears:

  • Helix Angle: The helix angle determines the degree of tooth engagement and sliding action. A higher helix angle increases the smoothness of operation but also introduces a larger axial force and thrust load on the gear.
  • Direction of Helix: Helical gears can have either a right-hand or left-hand helix. When two helical gears mesh, they must have opposite helix directions to ensure proper engagement.
  • Lubrication: Due to the sliding action between helical gear teeth, proper lubrication is crucial to minimize friction, wear, and heat generation. Adequate lubrication helps ensure the longevity and efficiency of the gear system.

In summary, a helical gear is a cylindrical gear with teeth cut in a helical pattern. It operates by gradually engaging and disengaging the teeth, resulting in smooth and quiet operation. Helical gears are widely used in various mechanical systems for parallel shaft applications, providing high load-carrying capacity and efficient power transmission.

China best Helical Gear worm gear motorChina best Helical Gear worm gear motor
editor by CX 2023-11-03