China best High Quality Stainless Steel CNC Machinery Worm Gear manufacturer

Product Description

Anodized red expansion bolt

Material

Stainless steel, Brass, Copper, Alloy,Aluminum alloy, Plastic and so on.

Surface treatment

Polishing, Zinc plating, Nickel plating, Chrome plating, Powder coating, Anodizing, E-coating.

Main equipments

Punching machines, Welding machines, Flame cutting, Laser cutting, Aluminum extrusion, Powder coating lines.

Drawing operation

PDF, JPG, Auto CAD, Pro/Engineer, Solidwork, UG. Etc.

Industry

Automotive, Electrical, Building, Furniture,Mechanical, Machine assembly, Computer,

Air industry. OEM/ODM Electronics etc.

Production Range

CNC Turning , CNC Milling, Sheet metal fabrication, Grinding, Forging, Laser cutting.Die casting etc.

Professional team 

Over 10 years experience in metal fabrication.

Delivery time

Strictly according to customer confirmed order.

Package detail

Standard export package or as customers’ specific requirement.

 

CNC part Tolerance +/-0.01mm or +/- 0.04″
CNC part  Quality  100% inspection on critical dimensions
Inspection equipment Three axis meansuring machine for X.Y.Z. Projection meter
Experience Professional  CNC customized OEM service and skilled worker
Production  CNC part small order is acceptable
Ability Develop hundreds of new CNC parts and Millions of CNC parts be exported to all over the world annually
Packaging PE-bag/Carton-box/ pallet, Customize package available for CNC machining parts
Lead time 25 days regularly
Term of Payment T/T. L/C or as Customer’s request
CNC part Price Competitive and factroy price , low price in china, CNC part order Quantity is with preferential treatment

 

Company Information
HangZhou CHINAMFG Hardware Products Co., Ltd, founded in 2014 and located in HangZhou City, Guandong Province. With 10 years experiences, we focus on solving problems, and helping clients to develop new products.
At CHINAMFG if you can dream it, we can make it. We are committed to help clients realize the concepts and designs with support of our engineering and manufacturing advantages that includes projects made of processes as: CNC turning parts, CNC milling parts,Bending parts, stamping part,laser cutting parts and so on.

 

Our Services
RICH EXPERIENCE:
All our staffs and engineers have been engaged in metal fabrication for more than 5 years. Professional technic and management experience help to control the cost and quality.
GOOD SERVICE:
Our sales team will response all your inquiry within 24 hours. Manufacturing non-standard parts according to your drawings and keep confidentiality for your design.
LOW PRICE:
Factory export directly, reduce intermediate costs.  Reasonable discount depend on your order quantity.
PERFECT QUALITY:
Strict quality control from material purchasing to shipments delivery.
Strong technology support, well established QA and QC system.
Evaluation the IGS, STEP or CAD file before machining process, ensure the quality points.
Packaging & Delivery:
Packaging Detail: According to customer’s request
Delivery Detail: 15 working days

 

FAQ:
1.Are you a manufacturer?
–Yes, we are. Warmly welcome to visit our factory at any time.
2.How does the ADL control the quality?
–During processing, the operating machine worker inspect the each sizes by themselves.
–After finished the first whole part, will show to QA for full inspection.
–Before shipment, the QA will inspect according to ISO sampling inspection standard for mass production.
3.How to handle the complains?
–If happen any complaints after got the goods, pls show us photos and detail compliants points, we will check with the production department and QC depart. Immediately and give solving solution. If need re-make, we will arrange re-make urgently and ship you new replacement. We will bear all the cost (including shipping cost).
4.What’s the payment term?
–50% deposit, 50% balance by T/T before shipment when order amount over 5000USD.
5.What’s the delivery time?
—Normal, 5-7 working days for sample. 12-30 working days for mass production.
–If any urgent parts, we can provide preferential processing and control the delivery time as you required.
6.What is the standard of package?
—Separate Blister plastic box or Bubble Wrap/Pearl Wool, keep no scratch and damage.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: as Customer Requested
Warranty: a Year
Condition: New
Certification: RoHS, GS, ISO9001
Standard: DIN, ASTM, GOST, GB, JIS, ANSI, BS
Customized: Customized
Customization:
Available

|

Customized Request

plastic gear

What are the limitations of using plastic gears in industrial settings?

Using plastic gears in industrial settings has certain limitations. Here’s a detailed explanation of these limitations:

  • Lower Load Capacity: Plastic gears generally have lower load-bearing capacities compared to metal gears. They are more susceptible to deformation and wear under heavy loads or high torque conditions. This makes them less suitable for applications that require withstanding substantial forces or transmitting high power.
  • Temperature Sensitivity: Plastic gears have temperature limitations, and their performance can be affected by temperature variations. Some plastic materials may experience dimensional changes, loss of strength, or reduced stiffness at elevated temperatures. Additionally, high temperatures can accelerate wear and reduce the lifespan of plastic gears. Therefore, plastic gears may not be suitable for applications that involve high-temperature environments or extreme temperature fluctuations.
  • Environmental Sensitivity: Plastic gears can be sensitive to certain environmental conditions. Certain plastic materials may degrade or become brittle when exposed to specific chemicals, solvents, oils, or UV radiation. This restricts their use in applications where exposure to harsh chemicals, lubricants, or outdoor elements is common.
  • Wear and Abrasion: While plastic gears can offer good wear resistance, they are generally more prone to wear and abrasion compared to metal gears. Under heavy-load or high-speed conditions, the surface of plastic gears can wear down, leading to a decrease in performance and potential failure over time. Additional measures, such as incorporating reinforcements or using lubrication, may be necessary to mitigate wear in certain applications.
  • Dimensional Stability: Plastic materials can have lower dimensional stability compared to metals. They may experience creep, shrinkage, or expansion over time, which can affect the accuracy and reliability of gear operation, particularly in applications with tight tolerances or precise gear meshing requirements.
  • Impact Resistance: Plastic gears may have limited impact resistance compared to metal gears. They can be more susceptible to damage or fracture when subjected to sudden impact or shock loads. This makes them less suitable for applications with high impact or heavy-duty requirements.
  • Compatibility with Existing Systems: In some cases, replacing metal gears with plastic gears may require modifications to the existing system. Plastic gears may have different dimensions, mounting requirements, or gear ratios compared to metal gears, necessitating design changes or adaptations to accommodate the use of plastic gears.

Despite these limitations, plastic gears can still offer significant advantages in certain industrial settings, such as reduced weight, noise reduction, and cost-effectiveness. It’s crucial to carefully evaluate the specific application requirements and consider the trade-offs between the benefits and limitations of plastic gears when deciding whether they are suitable for a particular industrial setting.

plastic gear

What are the factors affecting the durability of plastic gears?

The durability of plastic gears can be influenced by various factors. Here’s a detailed explanation of these factors:

1. Material Selection: The choice of plastic material is a critical factor affecting the durability of plastic gears. Different plastic materials have varying mechanical properties, including strength, stiffness, impact resistance, and wear resistance. Selecting a material with suitable properties for the specific application is essential to ensure long-term durability.

2. Load and Stress: The magnitude and distribution of the applied load significantly impact the durability of plastic gears. Excessive loads or high stress concentrations can lead to deformation, fatigue, or even failure of the gear teeth. Proper consideration of the anticipated loads and stress distribution is crucial during the design phase to ensure that the gears can withstand the expected operating conditions.

3. Operating Speed: The rotational speed at which the plastic gears operate can affect their durability. Higher speeds can generate more heat due to friction, potentially leading to thermal degradation or wear. The material selection and design should account for the anticipated operating speeds to ensure that the gears can withstand the associated stresses and temperature rise without compromising their durability.

4. Lubrication: Proper lubrication is vital for reducing friction, minimizing wear, and enhancing the durability of plastic gears. Insufficient or improper lubrication can result in increased friction, leading to accelerated wear and potential gear failure. The selection of suitable lubricants and appropriate lubrication methods is essential to ensure optimal performance and durability.

5. Environmental Conditions: The environmental conditions in which plastic gears operate can impact their durability. Factors such as temperature extremes, humidity, exposure to chemicals or UV radiation, and presence of abrasive particles can degrade the plastic material over time. It’s important to consider the anticipated environmental conditions and select a plastic material that offers sufficient resistance to these factors.

6. Gear Design: The design of plastic gears can greatly influence their durability. Factors such as tooth profile, gear geometry, clearances, and load distribution should be optimized to minimize stress concentrations, prevent excessive wear, and ensure even load distribution across the gear teeth. Proper design considerations, including appropriate fillets, reinforcements, and tooth profiles, can improve the durability of plastic gears.

7. Manufacturing Quality: The quality of the manufacturing process and the precision of the gear manufacturing can impact its durability. Inadequate manufacturing processes or poor quality control can result in dimensional inaccuracies, surface defects, or material inconsistencies that can compromise the gear’s durability. Ensuring high-quality manufacturing practices and inspections is essential to maintain the durability of plastic gears.

8. Maintenance and Service Life: The maintenance practices and service life of plastic gears can affect their durability. Regular inspection, proper lubrication, and timely replacement of worn or damaged gears can help extend their lifespan. Neglecting maintenance or operating gears beyond their intended service life can lead to accelerated wear and reduced durability.

By considering these factors, such as material selection, load and stress, operating speed, lubrication, environmental conditions, gear design, manufacturing quality, and maintenance practices, it’s possible to optimize the durability of plastic gears and ensure their long-term performance.

plastic gear

How do plastic gears differ from metal gears in terms of performance?

Plastic gears and metal gears exhibit differences in performance characteristics. Here’s a detailed explanation of how plastic gears differ from metal gears:

Strength and Durability:

  • Metal gears are generally stronger and more durable compared to plastic gears. They can withstand higher torque, heavy loads, and harsh operating conditions. Metal gears are commonly used in applications that require high strength and durability, such as heavy machinery, automotive transmissions, and industrial equipment.
  • Plastic gears have lower strength and may not be suitable for applications with high torque or heavy loads. However, advancements in plastic materials and manufacturing techniques have resulted in the development of high-performance plastics that offer improved strength and durability, allowing plastic gears to be used in a wider range of applications.

Weight:

  • Plastic gears are significantly lighter in weight compared to metal gears. This lightweight characteristic is advantageous in applications where weight reduction is important, as it can contribute to energy efficiency, lower inertia, and reduced wear on supporting components.
  • Metal gears are heavier due to the density and strength of the metal materials used. While the weight of metal gears can provide benefits in certain applications that require high inertia or increased stability, it may also result in additional energy consumption and higher stresses on supporting structures.

Noise and Vibration:

  • Plastic gears have inherent damping properties that help reduce noise and vibration levels during operation. This makes them suitable for applications where noise reduction is desired, such as in consumer electronics or office equipment.
  • Metal gears tend to generate more noise and vibration due to their higher stiffness. While there are methods to reduce noise in metal gears through design modifications and the use of noise-dampening materials, plastic gears generally offer better inherent noise and vibration reduction.

Wear and Lubrication:

  • Plastic gears have the advantage of self-lubrication due to certain plastic materials having inherent lubricating properties. This reduces friction and wear between gear teeth, eliminating the need for external lubrication and simplifying maintenance requirements.
  • Metal gears typically require lubrication to reduce friction and wear. Proper lubrication is essential for their performance and longevity. Insufficient or inadequate lubrication can lead to increased wear, heat generation, and even gear failure.

Corrosion Resistance:

  • Plastic gears can exhibit excellent resistance to corrosion and chemicals, depending on the chosen plastic material. This makes them suitable for applications in corrosive environments where metal gears may suffer from degradation or require additional protective measures.
  • Metal gears may corrode when exposed to moisture, chemicals, or certain operating environments. Corrosion can weaken the gears and compromise their performance and lifespan. However, corrosion-resistant metals or protective coatings can mitigate this issue.

Design Flexibility:

  • Plastic gears offer greater design flexibility compared to metal gears. Plastic materials can be easily molded into complex shapes, allowing for the creation of custom gear profiles and tooth geometries. This design flexibility enables gear optimization for specific applications, improving performance, efficiency, and overall machinery design.
  • Metal gears are more limited in terms of design flexibility due to the constraints of machining or shaping metal materials. While metal gears can still be customized to some extent, the process is generally more time-consuming and costly compared to plastic gear manufacturing.

It’s important to consider these performance differences when selecting between plastic and metal gears for a specific application. The requirements of the application, including load capacity, operating conditions, noise considerations, and durability expectations, should guide the choice of gear material.

China best High Quality Stainless Steel CNC Machinery Worm Gear manufacturer China best High Quality Stainless Steel CNC Machinery Worm Gear manufacturer
editor by CX 2024-04-15