China Best Sales CE0041A0-6 Rear Half Shaft Gear for CZPT Truck Spare Parts Differential Gear with Good quality

Product Description

High Quality CE0041A0-6 Rear Half Shaft Gear For CHINAMFG Truck Spare Parts Differential Gear

 

Detailed Photos

 

Product advantages & features

(1) Forged with 20crmoti and finely ground teeth.
(2) OEM status: CHINAMFG Axle, CHINAMFG Truck.
(3) Self inspection, patrol inspection and completion inspection to ensure 100% pass rate of products.

Factory Show

Brand Culture

Packaging & Shipping

Working Principle

Function of gear transmission

1.Variable speed: By meshing 2 gears of different sizes, the speed of the gears can be changed. For example, the gearbox gear can reduce or increase the speed from the engine to meet the needs of the car;
2.Torque change: The meshing of 2 gears of different sizes changes the transmitted torque while changing the speed of the gears. For example, the car gearbox, the main reducer in the drive axle, can change the torque of the car;
3.Change direction: the power action direction of some vehicle engines is perpendicular to the driving direction of the vehicle. The transmission direction of power must be changed to drive the vehicle. This device is usually the main reducer and differential of the car.
Gear transmission has the advantages of high transmission efficiency, compact structure, reliable gear transmission, long service life and stable transmission ratio. Its transmission efficiency can reach 99%. Among the commonly used mechanical transmissions, gear transmission has high efficiency; its disadvantage is that compared with belt transmission and chain transmission, the manufacturing and installation accuracy of gears are high, and the price is more expensive. It is not suitable for transmission with too large distance between shafts.
 

Basic types of gear transmissions

Gear drive Plane gear transmission Spur gear drive Inner Meshing
External Meshing
Rack and pinion
Helical Gear Drive Inner Meshing
External Meshing
Rack and pinion
Herringbone gear movement  
Space gear transmission Transfer intersecting motion Spur gear
Helical gear
Curved gear
Transfer staggered axis motion Crossed helical gear transmission
Worm turbine
Hypoid gear

Spur gear and helical gear

Spur gears enter and exit meshing along the whole tooth width at the same time. Its transmission efficiency is very high. Its disadvantages are poor stability, impact and noise.
The tooth meshing process of helical gear is longer than that of spur gear, and the number of teeth participating in meshing is also more than that of spur gear. Therefore, the helical gear transmission is stable, the bearing capacity is strong, and the noise and impact are small. The main disadvantage of helical gear is that the axial component force will be generated when the helical gear surface is subjected to the normal force, and the thrust bearing needs to be installed, which complicates the structure.
 

Lubrication of gear transmission

There is relative sliding and friction between gear transmission tooth surfaces, which will cause tooth surface wear, increase transmission power consumption and reduce transmission efficiency. Therefore, lubricant must be used to reduce wear and accelerate heat dissipation. This lubricant is gear oil. Different kinds of gears on the car are lubricated with different gear oils, which must not be added wrong. For example, automatic transmission oil and CVT transmission oil cannot be mixed.

Honor Certificate

FAQ

Q1. Are you a factory or trading company? 
We are a factory integrating research, development, production and sales.

Q2. What are the advantages of your products?
We support product customization to meet customer needs for special products. We can strictly control the products from raw materials to production, processing, product quality inspection, delivery, packaging, etc., and provide customers with high-end products and the most advantageous prices.

Q3. How about products price?
We are a factory, all products are direct sale at factory price. For the same price, we will provide the best quality; for the same quality, we have the most advantageous price.

Q4. What is your terms of packing?
We have branded packaging and neutral packaging, and we can also do what you want with authorization. This is flexible.

Q5. How to guarantee your after-sales service?
Strict inspection during production, Strictly check the products before shipment to ensure our packaging in good condition. Track and receive feedback from customer regularly. Our products warranty is 365 days.
Each product provides quality assurance service. If there is a problem with the product within the warranty period, the customer can negotiate with us in detail about the related claims, and we will do our best to satisfy the customer.

Q6. How can I accurately buy the products I need?
We need accurate product number, If you can’t provide product number, you can send us your product picture, or tell us your truck model, engine name plate, and so on. we will
determine exactly what you need products.

Q7. Do you accept third party inspection?
Yes.we do

Q8. How about your delivery time?
Generally, it will take 3 to 10 days after receiving your advance payment. The specific delivery time depends on the items and the quantity of your order.

Q9. What are your brand agency conditions and advantages?
After we CHINAMFG an agent in 1 city, we will not CHINAMFG a second company to protect the agent’s brand advantage and price advantage. And we will help the agent develop customers and solve all kinds of difficult and miscellaneous problems about products.

Q10. What is your terms of payment?
By TT or LC. We’ll show you the photos of the products and packages before you pay the balance.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Support
Warranty: 12 Months
Type: Truck Gear
Samples:
US$ 75/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

differential gear

Can differential gears be used in electric and hybrid vehicles?

Yes, differential gears can be used in both electric and hybrid vehicles. While electric and hybrid vehicles have different powertrain configurations compared to traditional internal combustion engine vehicles, they still require differential gears to distribute power between the wheels and accommodate speed differences. Here’s a detailed explanation:

1. Electric Vehicles (EVs):

In electric vehicles, the power is provided by one or more electric motors. These motors generate torque directly, eliminating the need for a traditional transmission system with a driveshaft. However, EVs still require differential gears to distribute power between the wheels.

2. Single-Speed Transmissions:

Many electric vehicles use single-speed transmissions, also known as direct-drive systems, which do not require multiple gears for speed variation. In these cases, the differential gear is integrated into the electric motor assembly, allowing it to distribute torque between the wheels.

3. Speed and Torque Distribution:

The differential gear in electric vehicles functions similarly to those in conventional vehicles. It accommodates speed differences between the wheels during turns and adjusts torque distribution to ensure optimal traction and control. This helps prevent wheel slip and allows for smooth cornering.

4. Hybrid Vehicles:

Hybrid vehicles combine an internal combustion engine with one or more electric motors. The powertrain configuration varies depending on the type of hybrid system, such as series hybrids, parallel hybrids, or plug-in hybrids. Despite the presence of an internal combustion engine, differential gears are still utilized in hybrid vehicles.

5. Transmissions in Hybrid Vehicles:

Hybrid vehicles often incorporate transmissions to optimize power delivery and efficiency. These transmissions may include differential gears or specific components that perform similar functions to distribute power between the wheels.

6. Regenerative Braking:

Both electric and hybrid vehicles commonly use regenerative braking systems to capture and store energy during deceleration. Differential gears play a role in transmitting torque from the wheels to the electric motor during regenerative braking, allowing the motor to act as a generator and recharge the batteries.

7. Differential Types:

Electric and hybrid vehicles can utilize various differential types, including open differentials, limited-slip differentials, or electronically controlled differentials. The choice of differential depends on factors such as vehicle performance, traction requirements, and driving conditions.

8. Advancements and Innovations:

With the evolving technology in electric and hybrid vehicles, there are also advancements and innovations in differential systems. Manufacturers are exploring new designs, such as integrated motor and differential units, to optimize power distribution and efficiency in these vehicles.

In summary, differential gears are indeed used in electric and hybrid vehicles to distribute power between the wheels, accommodate speed differences, and ensure optimal traction and control. The specific configuration and integration of differential gears may vary depending on the vehicle’s powertrain design and transmission system.

differential gear

What is the role of a center differential in all-wheel-drive systems?

In an all-wheel-drive (AWD) system, the center differential plays a crucial role in distributing power between the front and rear wheels. It is responsible for managing torque transfer and ensuring optimal traction and stability in various driving conditions. Here’s a detailed explanation of the role of a center differential in all-wheel-drive systems:

  • Torque Distribution: The center differential’s primary function is to distribute torque between the front and rear axles in an AWD system. It receives power from the engine and transmits it to both the front and rear wheels. The distribution of torque can vary depending on the design and capabilities of the center differential.
  • Power Split: The center differential splits the engine’s power between the front and rear axles in a manner that optimizes traction and stability. Under normal driving conditions, it typically distributes torque evenly, providing balanced power to all wheels. This balanced power distribution helps enhance vehicle control and stability.
  • Variable Torque Split: In some AWD systems, the center differential can vary the torque split based on driving conditions. It can adjust the distribution of power between the front and rear axles to optimize traction and handling. For example, if the system detects slippage in the front wheels, it can transfer more torque to the rear wheels to improve traction and maintain vehicle stability.
  • Traction Enhancement: The center differential helps improve traction by allowing the front and rear wheels to rotate at different speeds. This capability is particularly beneficial in situations where the left and right wheels on the same axle encounter varying levels of grip, such as when driving on slippery or uneven surfaces. By allowing the wheels to rotate at different speeds, the center differential enables the wheels with better traction to receive more power, enhancing overall grip and traction.
  • Adaptability to Different Conditions: A well-designed center differential enables an AWD system to adapt to different driving conditions. Whether it’s driving on dry pavement, wet roads, icy surfaces, or off-road terrain, the center differential helps optimize power distribution to maintain traction and stability. It allows the AWD system to provide enhanced grip and control, regardless of the prevailing driving conditions.
  • Integration with Other Systems: The center differential often works in conjunction with other vehicle systems to further enhance performance and safety. For example, some AWD systems incorporate electronic controls that can interact with the vehicle’s stability control system, traction control system, or other safety features. This integration helps optimize power delivery, traction management, and overall vehicle dynamics.

In summary, the center differential plays a critical role in all-wheel-drive systems. It distributes torque between the front and rear axles, enhances traction and stability, adapts to different driving conditions, and integrates with other vehicle systems. By effectively managing torque transfer, the center differential helps maximize grip, improve handling, and enhance overall performance in AWD vehicles.

differential gear

How does a limited-slip differential differ from an open differential?

A limited-slip differential (LSD) differs from an open differential in several key ways. Here’s a detailed explanation:

1. Torque Distribution:

In an open differential, torque is distributed equally between the two wheels. When both wheels have good traction, this distribution works well. However, if one wheel loses traction, the open differential will send more power to that wheel, causing it to spin while the other wheel receives minimal power. This can result in reduced traction and compromised performance.

In contrast, a limited-slip differential actively biases torque distribution. It uses various mechanisms, such as clutch packs, viscous fluids, or gear arrangements, to transfer more torque to the wheel with better traction. This torque biasing helps improve traction and power delivery, especially in situations where one wheel has reduced traction. By providing a more balanced torque distribution, a limited-slip differential enhances overall performance and stability.

2. Traction Improvement:

One of the primary advantages of a limited-slip differential is its ability to improve traction compared to an open differential. When one wheel encounters reduced traction, such as on slippery surfaces or during cornering, the limited-slip differential transfers more torque to the wheel with better traction. This helps maximize the vehicle’s ability to maintain forward motion and improves overall stability by minimizing wheel slip. In contrast, an open differential may distribute power to the wheel with the least resistance, resulting in reduced traction and compromised handling.

3. Drivability:

In terms of drivability, open differentials are generally smoother and more predictable. They allow the wheels to rotate at different speeds during turns, facilitating smooth operation and minimizing binding or tire scrubbing. Open differentials are also less expensive to manufacture, making them a common choice for everyday vehicles.

On the other hand, limited-slip differentials offer improved drivability compared to open differentials, especially in situations with varying traction conditions. Limited-slip differentials strike a balance between improved traction and maintaining drivability for everyday use. They can provide better control and stability during acceleration, cornering, and challenging road conditions.

4. Performance and Handling:

Limited-slip differentials are often favored in performance-oriented vehicles or applications that require enhanced handling characteristics. The ability to transfer torque to the wheel with better traction helps optimize power delivery, reduce wheel slip, and improve overall performance. Limited-slip differentials can enhance cornering ability, stability, and agility, allowing drivers to navigate curves and corners with more confidence and control.

In contrast, open differentials may be more prone to wheel slip, particularly in high-performance or demanding driving situations. This can result in compromised performance and reduced stability.

In summary, a limited-slip differential differs from an open differential in terms of torque distribution, traction improvement, drivability, and performance. By actively biasing torque distribution and improving traction, a limited-slip differential offers better performance and handling characteristics, especially in challenging driving conditions.

China Best Sales CE0041A0-6 Rear Half Shaft Gear for CZPT Truck Spare Parts Differential Gear with Good qualityChina Best Sales CE0041A0-6 Rear Half Shaft Gear for CZPT Truck Spare Parts Differential Gear with Good quality
editor by Dream 2024-05-14