China Custom CZPT Custom Aluminum Stainless Steel Metal Spur Standard Ring Gear gear ratio calculator

Product Description

IHF Custom Aluminum Stainless Steel Metal Spur Standard Ring Gear

Main Features:
Helical Gear
1. Produce strictly in accordance with ANSI or DIN standard dimension
2. Material: SCM 415 steel 
3. Bore: Finished bore
4. Precision grade: DIN 5 to DIN 7
5. Surface treatment: Carburizing and Quenching
6. Module: From 1 to 4
7. Tooth: From Z15 to Z70

Product Parameters

Product name Spur Gear & Helical Gear & Gear Shaft
Customized service OEM, drawings or samples customize
Materials Available Stainless Steel, Carbon Steel, S45C, SCM415, 20CrMoTi, 40Cr, Brass, SUS303/304, Bronze, Iron, Aluminum Alloy etc
Heat Treatment Quenching & Tempering, Carburizing & Quenching, High-frequency Hardening, Carbonitriding……
Surface Treatment Conditioning, Carburizing and Quenching,Tempering ,High frequency quenching, Tempering, Blackening, QPQ, Cr-plating, Zn-plating, Ni-plating, Electroplate, Passivation, Picking, Plolishing, Lon-plating, Chemical vapor deposition(CVD), Physical vapour deposition(PVD)…
BORE Finished bore, Pilot Bore, Special request
Processing Method Molding, Shaving, Hobbing, Drilling, Tapping, Reaming, Manual Chamfering, Grinding etc
Pressure Angle 20 Degree
Hardness 55- 60HRC
Size Customer Drawings & ISO standard
Package Wooden Case/Container and pallet, or made-to-order
Certificate ISO9001:2008
Machining Process Gear Hobbing, Gear Milling, Gear Shaping, Gear Broaching, Gear Shaving, Gear Grinding and Gear Lapping
Applications Printing Equipment Industry, Laser Equipment Industry, Automated Assemblyline Industry, Woodening Industry, Packaging Equipment Industry, Logistics storage Machinery Industry, Robot Industry, Machine Tool Equipment Industry

 

Company Profile

Packaging & Shipping

FAQ

Main Markets? North America, South America, Eastern Europe , West Europe , North Europe, South Europe, Asia
How to order? * You send us drawing or sample
* We carry through project assessment
* We give you our design for your confirmation
* We make the sample and send it to you after you confirmed our design
* You confirm the sample then place an order and pay us 30% deposit
* We start producing
* When the goods is done, you pay us the balance after you confirmed pictures or tracking numbers.
* Trade is done, thank you!!

 

If you are interested in our products, please tell us which materials, type, width, length u want.

Warranty: One Year
Condition: New
Certification: RoHS, ISO9001
Standard: DIN, GB, JIS, Agma
Customized: Customized
Material: Stainless Steel
Samples:
US$ 15/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

aluminum gear

Can aluminum gears be used in automotive applications?

Aluminum gears can indeed be used in automotive applications. Here’s a detailed explanation:

1. Weight Reduction: Aluminum is a lightweight material compared to traditional options like steel. By using aluminum gears, automotive manufacturers can reduce the overall weight of the vehicle, which can lead to improved fuel efficiency and performance.

2. Corrosion Resistance: Aluminum gears can offer good corrosion resistance, making them suitable for automotive applications where exposure to moisture, road salt, and other corrosive elements is common. Proper surface treatments or coatings can further enhance their corrosion resistance.

3. Noise and Vibration Dampening: Aluminum gears can help reduce noise and vibration levels in automotive applications. The damping properties of aluminum contribute to a quieter and smoother operation, enhancing the overall driving experience.

4. Design Flexibility: Aluminum is highly formable, allowing the production of gears with complex shapes and intricate designs. This design flexibility can be advantageous in automotive applications where space constraints or specific gear geometries are required.

5. Heat Dissipation: Aluminum has good thermal conductivity, which helps dissipate heat generated during operation. This is especially beneficial in automotive applications where gears may be subjected to high temperatures due to heavy loads or intense driving conditions.

6. Cost-Effectiveness: Aluminum gears can offer a cost-effective solution for automotive manufacturers. The abundance of aluminum as a raw material and its relatively low cost compared to other metals make it an attractive option for mass production.

7. Specific Automotive Applications: Aluminum gears are commonly used in various automotive systems. For example, they can be found in transmissions, differentials, power steering systems, and engine timing systems. The specific performance requirements and operating conditions of these applications are carefully considered during gear design and material selection.

It’s important to note that while aluminum gears have many advantages, they also have limitations. Aluminum is not as strong as some other materials, and in high-torque or heavy-load automotive applications, alternative materials like steel or cast iron may be preferred for their higher strength and load-bearing capabilities.

In summary, aluminum gears can be successfully used in automotive applications, providing benefits such as weight reduction, corrosion resistance, noise and vibration dampening, design flexibility, heat dissipation, and cost-effectiveness. The suitability of aluminum gears depends on the specific requirements, operating conditions, and performance trade-offs of the automotive system in which they are used.

aluminum gear

Are there specific design considerations for using aluminum gears?

Using aluminum gears requires specific design considerations. Here’s a detailed explanation:

1. Material Selection: Aluminum alloys have different mechanical properties and characteristics. When designing aluminum gears, it’s important to select an alloy that meets the specific requirements of the application. Factors to consider include the desired strength, hardness, wear resistance, corrosion resistance, and thermal conductivity of the gear. The selected alloy should be suitable for the operating conditions and loads expected in the application.

2. Strength and Load Capacity: Aluminum is generally not as strong as some other materials like steel or cast iron. Therefore, when designing aluminum gears, it’s important to carefully consider the anticipated loads and stresses they will experience. Structural analysis, such as finite element analysis (FEA), can help determine the gear’s load capacity and structural integrity. Reinforcement techniques or incorporating additional support structures may be necessary in high-load applications.

3. Heat Dissipation: Aluminum has good thermal conductivity, which allows it to dissipate heat effectively. However, in applications where gears generate significant heat, thermal management becomes critical. Designing gear systems with proper cooling mechanisms, such as fins, heat sinks, or forced air circulation, can help prevent overheating and maintain optimal operating temperatures for the aluminum gears.

4. Gear Geometry: The design of aluminum gears should consider factors such as tooth profile, module, pressure angle, and tooth thickness. The gear geometry affects the gear’s load-carrying capacity, efficiency, noise level, and overall performance. It’s important to ensure proper tooth engagement, minimize stress concentrations, and optimize gear meshing characteristics to achieve the desired functionality and durability.

5. Lubrication: Lubrication is essential for aluminum gears to minimize friction, wear, and heat generation. Design considerations should include providing adequate space for lubricant reservoirs, channels, or oil passages to ensure proper lubricant distribution across the gear surfaces. The gear design should also facilitate efficient lubricant retention and minimize the risk of lubricant leakage or contamination.

6. Noise and Vibration: Aluminum gears can contribute to noise reduction due to their damping properties. However, the gear design should aim to further minimize noise and vibration levels. Considerations include gear tooth profile optimization, gear tooth surface finish, backlash control, and the use of noise-dampening features such as gear coatings or sound-absorbing materials.

7. Manufacturability: Designing aluminum gears should take into account the manufacturability aspects. Aluminum is a highly formable material, allowing for complex gear shapes and intricate designs. However, considerations such as casting or machining processes, tooling requirements, dimensional tolerances, and surface finish specifications should be addressed to ensure consistent and cost-effective production.

8. Compatibility with Other Components: Aluminum gears are often used in conjunction with other components within a larger system. It’s important to ensure compatibility between aluminum gears and other materials or components they interact with. Factors such as galvanic corrosion, differential thermal expansion, or material compatibility should be considered to prevent premature failure or performance issues.

By addressing these specific design considerations, aluminum gears can be effectively utilized in various applications, taking advantage of their unique properties and benefits.

aluminum gear

What industries commonly use aluminum gears?

Aluminum gears find applications in various industries. Here’s a detailed explanation:

1. Automotive Industry: The automotive industry extensively uses aluminum gears, particularly in transmissions and differentials. The lightweight nature of aluminum gears helps improve fuel efficiency and overall vehicle performance. Additionally, aluminum gears are used in engine timing systems, power steering mechanisms, and other automotive components.

2. Aerospace Industry: Aluminum gears are utilized in the aerospace industry for applications such as aircraft engines, landing gear systems, and actuation mechanisms. The weight reduction benefits of aluminum gears are particularly valuable in aerospace, where minimizing weight is crucial for fuel efficiency and payload capacity.

3. Railway Industry: Aluminum gears are employed in various railway applications, including propulsion systems, gearboxes, and braking systems. The lightweight nature of aluminum gears helps reduce energy consumption and enhances the overall efficiency of railway systems. Additionally, aluminum gears offer corrosion resistance, which is advantageous in railway environments.

4. Marine Industry: Aluminum gears are used in marine applications, such as boat propulsion systems, marine engines, and winches. The corrosion resistance of aluminum gears is especially important in marine environments where exposure to saltwater and moisture is common.

5. Machinery and Equipment Manufacturing: Aluminum gears are utilized in a wide range of machinery and equipment, including industrial machinery, agricultural equipment, construction machinery, and material handling systems. The lightweight nature, corrosion resistance, and design flexibility of aluminum gears make them suitable for various machinery applications.

6. Electronics and Robotics: Aluminum gears are employed in electronics and robotics applications where weight reduction, compact size, and electrical conductivity are essential. They are used in precision equipment, robotic arms, automation systems, and various electromechanical devices.

7. Medical Equipment: The medical equipment industry utilizes aluminum gears in devices such as imaging equipment, robotic surgical systems, and diagnostic instruments. Aluminum gears offer advantages such as lightweight construction, noise reduction, and electrical conductivity in medical applications.

8. Sports and Recreation: Aluminum gears are used in sports and recreational equipment, including bicycles, motorcycles, scooters, and fitness machines. The lightweight nature of aluminum gears contributes to improved performance, maneuverability, and user experience in these applications.

9. Power Generation: Aluminum gears find applications in power generation systems, such as wind turbines and hydroelectric generators. The lightweight construction of aluminum gears facilitates efficient energy conversion and reduces the loads on the power transmission components.

These are just a few examples of the industries that commonly use aluminum gears. The versatility, lightweight nature, corrosion resistance, and other advantageous properties of aluminum gears make them suitable for a wide range of applications across numerous industries.

China Custom CZPT Custom Aluminum Stainless Steel Metal Spur Standard Ring Gear gear ratio calculatorChina Custom CZPT Custom Aluminum Stainless Steel Metal Spur Standard Ring Gear gear ratio calculator
editor by CX 2023-09-08