China Custom Diameter 15m Girth Bevel Gear Supplier for Rotary Kiln and Ball Mill worm and wheel gear

Product Description

With 30-year rich industry experience and knowledge, we have earned specialization in manufacturing and supplying superior quality Large Gears. These are fabricated in conformity with defined industry standards, these compact and sturdy gears have standard working speed and torque measurement. The offered range is widely acknowledged by the customers for features like optimum performance, robust construction and longer life. These precision engineered gears are widely demanded across varied industries, where large gear reduction is required.
 
 
 
Advantages:
– Products with Customers’ Designs 
– Strong Machining & Heat Treatment Abilities 
– Strict Quality Control 
– Prompt Delivery
-Experience in Cooperation with Fortune 500 Companies 
Process: 
Forging/Casting
Normalizing&Tempering-Proof Machinnig
Quenching&Tempering
Finish Machining(Teeth Grinding)
We can offer you in various process conditions
Solutions for Many End Markets and Applications
–Mining
–Metallurgy
–Power Generation
–Sugar
–Cement Plant
–Port Machinery
–Oil and natural
–Papermaking
–OEM gear case
–General Industrial
 
 
  Specifications of Gear :
 

No. Item Description
1 Diameter ≤15m
2 Module ≤45
3 Material Cast Alloy Steel, Cast Carbon Steel, Forged Alloy Steel, Forged Carbon Steel
4 Structure From Integrated, Half to Half, Four Pieces and More Pieces
5 Heat Treatment Quenching & Tempering, Normalizing & Tempering, Carburizing & Quenching & Tempering
6 Tooth Form Annular Gear, Outer Gear Ring
7 Standard ISO, EN, DIN, AISI, ASTM, JIS, IS, GB

Inspection and Test Outline of Girth Gear:
 

No. Item Inspection Area Acceptance Criteria Inspection Stage Certificates
1 Chemical Composition Sample Material Requirement When Smelting
After Heat Treatment
Chemical Composition Report
2 Mechanical Properties Sample(Test Bar on the Gear Body) Technical Requirement After Heat Treatment Mechanical Properties Report
3 Heat Treatment Whole Body Manufacturing Standard During Heat Treatment Heat Treatment Report
Curves of Heat Treatment
4 Hardness Test Tooth Surface, 3 Points Per 90° Technical Requirement After Heat Treatment Hardness Teat Report
After Semi Finish Machining
5 Dimension Inspection Whole Body Drawing After Semi Finish Machining Dimension Inspection Report
Finish Machining
6 Magnetic Power Test (MT) Tooth Surface Agreed Standard After Finish Gear Hobbing MT  Report
7 UT Spokes Parts Agreed Standard After Rough Machining UT Report
After Welded
After Semi Finish Machining
8 PT Defect Area No Defect Indicated After Digging
After Welded
PT Record
9 Mark Inspection Whole Body Manufacturing Standard Final Inspection Pictures
10 Appearance Inspection Whole Body CIC’s Requirement Before Packing
(Final Inspection)
 
11 Anti-rust Inspection Whole Body Agreed Anti-rust Agent Before Packing Pictures 
12 Packing Inspection Whole Body Agreed Packing Form During Packing Pictures

Facilities For Manufacturing Gear ring:
 

No. Item Description
1 Smelting & Casting Capability  
40t ,50t, 80t Series AC Electric Arc Furnace
2×150t, 60t LF Ladle Refining Furnace
150t, 60t Series VD/VOD Furnace
20×18m Large Pouring Facility
We can pour 900t refining liquid steel one time, and achieve vacuum poured 600t steel ingots.
We can produce the high quality steel of more than 260 steel grades as carbon steel,structural alloy steel and the structural steel, refractory steel and stainless steel of special requirement. The maximum weight of casting steel, gray casting, graphite cast iron and non-ferrous casting is 600t, 200t, 150t and 20t separately.
2 Forging Capability  
The only one in the word, the most technologically advanced and the largest specification18500t Oil Press, equipped with 750t.m forging operation machine
8400t Water Press
3150t Water Press
600t Water Press
Φ5m High Precision Ring Mill ( WAGNER,Germany)
Φ12m High Precision Ring Mill
We can roll rings of different sections of carbon steel, alloy steel, high temperature alloy steel and non-ferrous alloys such as copper alloy, aluminum alloy and titanium alloy. Max. Diameter of rolled ring will be 12m.
3 Heat Treatment Capability 9×9×15m,8×8×12m,6×6×15m,15×16×6.5m,16×20×6m ,7×7×17m Series Heat Furnace and Heat Treatment Furnaces
φ2.0×30m,φ3.0×5.0m Series Heat Treatment Furnaces
φ5.0×2.5m,φ3.2×1.5m,φ3.0×5.0m,φ2.0×5m Series Carburizing Furnaces & Nitriding Furnaces & Quenching Bathes
φ2.0×30m Well Type CNC Electrical Furnaces
Φ3.0×5.0M Horizontal Gas Temperature-differential Furnace
Double-frequency and Double-position Quenching Lathe of Pinion Shaft
4 Machining Capability 1. ≥5m CNC Heavy Duty Vertical Lathes
12m CNC Double-column Vertical Lathe
10m CNC Double-column Vertical Lathe
10m CNC Single-column Vertical Lathe
6.3m Heavy Duty Vertical Lathe
5m CNC Heavy Duty Vertical Lathe  
2. ≥5m Vertical Gear Hobbing Machines
15m CNC Vertical Gear Hobbing Machine
10m Gear Hobbing Machine
8m Gear Hobbing Machine
5m Gear Hobbing Machine
3m Gear Hobbing Machining
3. Imported High-precision Gear Grinding Machines
0.8m~3.5m CNC Molding Gear Grinding Machines
4. Large Boring & Milling Machines
220 CNC Floor-mounted Boring & Milling Machine
200 CNC Floor-mounted Boring & Milling Machine
160 CNC Floor-mounted Boring & Milling Machine

Testing Process:
· QA DOC: Chemical Composition Report, Mechanical Properties Report, UT Report, Heat Treatment Report, Dimensions Check Report
· The data on chemical composition report and mechanical properties report are approved by third party, HangZhou Ship Material Research Institute, CSIC.
· UT test: 100% ultrasonic test according to EN15718-3, SA388, Sep 1921 C/c etc.
· Heat Treatment Report: provide original copy of heat treatment curve/time table.

 

 

         
Girth Gear Packing Picture

 

Main Facilites for Gear Manufacturing

 

            Other Related Spare Parts

Application: Industry
Hardness: Other
Gear Position: Other
Manufacturing Method: Casting/Forging
Material: According to Customer Design
Type: Girth Gear Ring
Customization:
Available

|

Customized Request

bevel gear

What is the lifespan of a typical bevel gear?

The lifespan of a typical bevel gear can vary depending on several factors, including the quality of the gear, the operating conditions, maintenance practices, and the specific application. Here’s a detailed explanation:

Bevel gears, like any mechanical component, have a finite lifespan. The lifespan of a bevel gear is influenced by the following factors:

  • Quality of the Gear: The quality of the gear itself is a significant factor in determining its lifespan. Bevel gears manufactured using high-quality materials and precise manufacturing processes tend to have longer lifespans. Gears made from durable materials and manufactured with tight tolerances and accurate tooth profiles are more resistant to wear and fatigue, resulting in extended lifespans.
  • Operating Conditions: The operating conditions under which the bevel gear operates greatly affect its lifespan. Factors such as torque levels, rotational speed, temperature, and shock loads can impact the wear and fatigue characteristics of the gear. Gears subjected to high torque, high-speed rotation, excessive heat, or frequent heavy loads may experience accelerated wear and reduced lifespan compared to gears operating under milder conditions.
  • Maintenance Practices: Proper maintenance practices can significantly extend the lifespan of a bevel gear. Regular inspection, lubrication, and preventive maintenance help identify and address potential issues before they escalate. Adequate lubrication, cleanliness, and alignment contribute to reducing wear, minimizing the risk of damage, and prolonging the gear’s lifespan. Neglecting maintenance or improper maintenance practices can lead to premature wear, failure, and reduced lifespan.
  • Application Specifics: The specific application in which the bevel gear is used plays a vital role in determining its lifespan. Different applications impose varying loads, speeds, and operating conditions on the gear. Gears used in heavy-duty industrial applications, such as mining or heavy machinery, may experience more significant wear and have shorter lifespans compared to gears used in lighter-duty applications.
  • Load Distribution: Proper load distribution among the gear teeth is critical for ensuring longevity. Evenly distributed loads help prevent localized wear and ensure that no individual teeth are subjected to excessive stress. Factors such as gear design, tooth profile, and accurate alignment influence load distribution and can impact the gear’s lifespan.

Due to the complex interplay of these factors, it is challenging to provide a specific lifespan for a typical bevel gear. However, with proper design, high-quality manufacturing, suitable operating conditions, regular maintenance, and appropriate load distribution, bevel gears can have a lifespan ranging from several thousand to tens of thousands of operating hours.

It is important to note that monitoring the gear’s condition, including wear patterns, tooth damage, and any signs of failure, is crucial for ensuring safe and reliable operation. When signs of wear or damage become significant or when the gear no longer meets the required performance criteria, replacement or refurbishment should be considered to maintain the overall system’s integrity and performance.

bevel gear

What are the potential challenges in designing and manufacturing bevel gears?

Designing and manufacturing bevel gears can present several challenges due to their complex geometry, load requirements, and manufacturing processes. Here’s a detailed explanation of the potential challenges:

When it comes to designing and manufacturing bevel gears, the following challenges may arise:

  • Complex Geometry: Bevel gears have intricate geometry with non-parallel and intersecting tooth profiles. Designing bevel gears requires a thorough understanding of gear theory, tooth engagement, and load distribution. The complex geometry poses challenges in determining the optimal tooth profile, tooth contact pattern, and gear ratios for the specific application.
  • Load Analysis and Distribution: Determining the correct load analysis and distribution is crucial to ensure the gears can handle the anticipated forces and torques. Bevel gears often encounter varying loads, including radial loads, axial loads, and bending moments. Accurately predicting and distributing these loads across the gear teeth is essential for achieving proper gear strength, minimizing wear, and preventing premature failure.
  • Manufacturing Precision: Bevel gears require high manufacturing precision to ensure smooth operation, minimal backlash, and efficient power transmission. Achieving the required precision in gear manufacturing involves precise machining, grinding, and heat treatment processes. The complex geometry of bevel gears adds to the manufacturing complexity, necessitating specialized equipment and skilled operators.
  • Alignment Challenges: Proper alignment of bevel gears is critical for optimal performance and longevity. Achieving accurate alignment can be challenging due to the non-parallel shafts and intricate tooth profiles. Misalignment can lead to increased noise, vibration, and premature wear. Design considerations for alignment, as well as careful assembly and alignment procedures during manufacturing, are necessary to address this challenge.
  • Lubrication and Cooling: Bevel gears require effective lubrication to minimize friction, wear, and heat generation. Ensuring proper lubrication and cooling can be challenging due to the unique shape of bevel gears and the limited space available for lubricant circulation. Designing appropriate lubrication systems, selecting suitable lubricants, and considering heat dissipation methods are essential for maintaining optimal gear performance and preventing overheating.
  • Quality Control: Maintaining consistent quality during the manufacturing process is crucial for reliable bevel gears. Implementing robust quality control measures, including dimensional inspections, surface quality assessments, and gear testing, helps ensure that the manufactured gears meet the specified requirements. Consistency in gear quality is essential to minimize variations in performance and to ensure accurate gear meshing and load distribution.

Addressing these challenges requires a combination of engineering expertise, advanced manufacturing techniques, and quality control processes. Collaborating with experienced gear designers, employing state-of-the-art manufacturing technologies, and conducting thorough testing and analysis can help overcome these challenges and produce high-quality bevel gears that meet the performance and durability requirements of the intended application.

bevel gear

What are the applications of a bevel gear?

A bevel gear finds applications in various industries and mechanical systems where changes in direction or speed of rotational motion are required. Here’s a detailed explanation of the applications of a bevel gear:

  • Automotive Industry: Bevel gears are widely used in the automotive industry, particularly in differentials. Differentials are responsible for distributing torque between the driving wheels of a vehicle, allowing them to rotate at different speeds when turning. Bevel gears in differentials transmit power from the engine to the wheels, enabling smooth cornering and improved traction.
  • Mechanical Power Transmission: Bevel gears are employed in mechanical power transmission systems to change the direction of rotational motion. They are used in applications such as power tools, machine tools, conveyors, and printing presses. By meshing with other bevel gears or with spur gears, they transmit torque and power efficiently from one shaft to another, accommodating changes in direction and speed.
  • Marine Propulsion Systems: Bevel gears are extensively used in marine propulsion systems, including boats and ships. They are commonly found in the propulsion shaft line, where they transmit torque from the engine to the propeller shaft, allowing the vessel to move through water. Bevel gears in marine applications are designed to withstand high loads, resist corrosion, and operate efficiently in harsh environments.
  • Aerospace Industry: Bevel gears are utilized in various aerospace applications. They are employed in aircraft landing gear systems, where they transmit torque from the hydraulic motor to extend or retract the landing gear. Bevel gears are also found in helicopter rotor systems, providing the necessary power transmission to rotate the rotor blades.
  • Railway Systems: Bevel gears play a crucial role in railway systems, particularly in locomotives and rolling stock. They are used in the transmission systems to transfer power from the engine to the wheels. Bevel gears ensure smooth and efficient power transfer, enabling the train to move forward or backward while negotiating curves on the track.
  • Industrial Machinery: Bevel gears are extensively employed in various industrial machinery, such as milling machines, lathes, and industrial robots. They facilitate changes in direction and speed of rotational motion, enabling precise positioning, accurate cutting, and smooth operation of the machinery.
  • Mining and Construction Equipment: Bevel gears are used in mining and construction equipment to transfer power and torque in heavy-duty applications. They are found in equipment such as excavators, bulldozers, and crushers, where they provide reliable power transmission in challenging environments.

These are just a few examples of the applications of bevel gears. Their ability to transmit power, change the direction of rotational motion, and accommodate intersecting shafts makes them versatile and suitable for a wide range of industries and mechanical systems.

In summary, bevel gears are extensively utilized in automotive differentials, mechanical power transmission systems, marine propulsion systems, aerospace applications, railway systems, industrial machinery, and mining and construction equipment. Their applications span across industries where changes in direction or speed of rotational motion are essential for efficient and reliable operation.

China Custom Diameter 15m Girth Bevel Gear Supplier for Rotary Kiln and Ball Mill worm and wheel gearChina Custom Diameter 15m Girth Bevel Gear Supplier for Rotary Kiln and Ball Mill worm and wheel gear
editor by CX 2023-10-07