Product Description
1) According to the different strength and performance, we choose the steel with strong compression;
2) Using Germany professional software and our professional engineers to design products with more reasonable size and better performance; 3) We can customize our products according to the needs of our customers,Therefore, the optimal performance of the gear can be exerted under different working conditions;
4) Quality assurance in every step to ensure product quality is controllable.
Product Paramenters
DRIVEN GEAR |
NUMBER OF TEETH |
17 |
MODULE |
10.3572 |
|
LENTH |
316 |
|
OUTER DIAMETER |
ø180 |
|
DIRECTION OF SPIRAL |
L |
|
ACCURACY OF SPLINE |
M33*1.5-6h |
|
NUMBER OF SPLINE |
46 |
DRIVEN GEAR |
NUMBER OF TEETH |
28 |
OUTER DIAMETER |
ø292 |
|
DIAMETER OF INNER HOLE |
ø190 |
|
ACCURACY OF SCREW |
16-M16*1.5-6H |
|
CENTER DISTANCE OF SCREW HOLE |
ø220 |
|
DIRECTION OF SPIRAL |
R |
Company Profiles
Our company,HangZhou CHINAMFG Gear co.,Ltd , specialized in Hypoid and spiral bevel gear used in Automotive industry, was foundeded in 1996, with registered capital 136,8 square meter, with building area of 72,000 square meters. More than 500 employees work in our company.
We own more than 560 high-precise machining equipments, 10 Klingelnberg Oerlikon gear production lines, 36 Gleason gear production lines, 5 forging production lines 2 german Aichilin and 5 CHINAMFG CHINAMFG advanced automatic continuous heat treatment production lines. With the introducing the advanced Oerlikon C50 and P65 measuring center, we enhence our technology level and improve our product quality a lot. We offer better quality and good after-sale service with low price, which insure the good reputation. With the concept of “for the people, by technology, creativity, for the society, transfering friendship, honest”, we are trying to provice the world-top level product.
Our aim is: CHINAMFG Gear,world class, Drive the world.
According to the different strength and performance, we choose the steel with strong compression;Using Germany professional software and our professional engineers to design products with more reasonable size and better performance;We can customize our products according to the needs of our customers,Therefore, the optimal performance of the gear can be exerted under different working conditions;Quality assurance in every step to ensure product quality is controllable.
Our company had full quality management system and had been certified by ISO9001:2000, QS-9000:1998, ISO/TS16949 , which insure the entrance of international market.
Certification & honors
Packaging & Shipping
Packaging Detail:standard package(carton ,wooden pallet).
Shipping:Support Sea freight. Accept FOB,EXW,FAS,DES.
Cooperative customers
HangZhou CHINAMFG Gear Co., Ltd. adheres to the concept of “people-oriented, prosper with science and technology; create high-quality products, contribute to the society; turn friendship, and contribute sincerely”, and will strive to create world automotive axle spiral bevel gear products.
1.Do you provide samples?
Yes,we can offer free sample but not pay the cost of freight.
2.What about OEM?
Yes,we can do OEM according to your requirements.
3.How about after-sales service?
We have excellent after-sales service if you have any quanlity problem,you can contact us anytime.
4.What about package?
Stardard package or customized package as requirements.
5.How to ensure the quanlity of the products?
We can provide raw meterial report,metallographic examination and the accuracy testing etc.
6.How long is your delivery time?
Genarally it is 4-7 days.If customized it will be take 20 days according to your quantity.
Application: | Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car |
---|---|
Hardness: | Hardened Tooth Surface |
Gear Position: | External Gear |
Manufacturing Method: | Cast Gear |
Toothed Portion Shape: | Herringbone Gear |
Material: | Cast Steel |
Samples: |
US$ 70/Set
1 Set(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
How do you install a herringbone gear system?
Installing a herringbone gear system requires careful attention to ensure proper alignment, engagement, and functionality. Here’s a detailed explanation of the steps involved in installing a herringbone gear system:
- Preparation: Before installation, gather all the necessary components, including the herringbone gears, shafts, bearings, and any associated hardware. Ensure that the gears and shafts are clean and free from any debris or contaminants that could affect their performance. Review the gear system’s specifications, including the gear ratios, torque requirements, and any specific installation guidelines provided by the manufacturer.
- Shaft Alignment: Proper shaft alignment is crucial for the smooth operation of a herringbone gear system. Align the shafts accurately to ensure that they are parallel and concentric with each other. This can be achieved using alignment tools such as dial indicators and laser alignment systems. Proper shaft alignment helps to minimize misalignment-related issues such as gear tooth wear, noise, and premature failure.
- Gear Engagement: Position the herringbone gears on their respective shafts, ensuring that they are correctly oriented and meshing properly. The double helical tooth profile of the herringbone gears requires careful engagement to prevent interference and ensure smooth operation. Pay attention to the gear backlash, which is the slight clearance between the gear teeth when they are not under load. Follow the manufacturer’s recommendations for the appropriate gear backlash and adjust as necessary.
- Bearing Installation: Install the appropriate bearings to support the gear shafts. Ensure that the bearings are aligned and properly seated in their housings. Use the specified lubrication method and apply the appropriate lubricant to the bearings to minimize friction and wear. Adequate lubrication is essential for the smooth operation and longevity of the gear system.
- Check Clearances: Once the gears, shafts, and bearings are installed, check for any interferences or clearances issues. Verify that there is sufficient clearance between the gear teeth, as well as between the gears and any adjacent components or structures. Ensure that there are no obstructions that could impede the rotational movement of the gears or cause damage during operation.
- Tightening and Fastening: Securely tighten all fasteners, such as bolts or set screws, to hold the gears, shafts, and bearings in place. Follow the recommended torque specifications provided by the manufacturer to ensure proper fastening without over-tightening, which could lead to excessive stress or deformation of the components.
- Testing and Adjustment: After installation, perform a thorough inspection and functional testing of the herringbone gear system. Rotate the shafts manually or using a suitable drive mechanism to check for smooth and proper gear engagement. Listen for any unusual noises, vibrations, or irregularities that could indicate misalignment or other issues. If necessary, make fine adjustments to the gear engagement, backlash, or shaft alignment to optimize the performance of the gear system.
It is important to note that the installation process may vary depending on the specific gear system design, size, and application requirements. Always refer to the manufacturer’s guidelines, technical documentation, and any applicable industry standards when installing a herringbone gear system to ensure proper installation and optimal performance.
How do you maintain and service a herringbone gear system?
Maintaining and servicing a herringbone gear system is crucial for ensuring its optimal performance, longevity, and reliability. Regular maintenance and service activities help identify and address potential issues, minimize wear, and extend the lifespan of the gear system. Here’s a detailed explanation of how to maintain and service a herringbone gear system:
- Inspection: Conduct regular visual inspections of the gear system to identify any signs of wear, damage, or misalignment. Inspect the gear teeth, shafts, bearings, and other components for any visible abnormalities, such as pitting, scoring, cracks, or excessive wear. Check for oil leaks, loose fasteners, or any other potential issues that may affect the gear system’s performance.
- Lubrication: Ensure that the lubrication of the herringbone gear system is adequate and meets the manufacturer’s recommendations. Monitor the lubricant level and condition regularly. Check for proper lubricant distribution and coverage on the gear teeth and contact surfaces. Replenish or replace the lubricant as necessary to maintain the required film thickness and lubricating properties.
- Alignment and Clearance: Check and maintain proper shaft alignment to prevent misalignment-related issues. Use alignment tools such as dial indicators or laser alignment systems to verify the parallelism and concentricity of the gear system shafts. Ensure that the gear engagement is correct and that there is appropriate gear backlash. Make any necessary adjustments to optimize gear alignment and clearance as per the manufacturer’s guidelines.
- Fasteners and Connections: Regularly inspect and tighten all fasteners, such as bolts, set screws, or clamps, to ensure that they are securely fastened. Loose fasteners can lead to misalignment, vibration, and potential gear system failure. Follow the recommended torque specifications provided by the manufacturer when tightening the fasteners to avoid over-tightening or under-tightening.
- Monitoring and Analysis: Implement a monitoring and analysis program to track the performance of the herringbone gear system over time. This can include vibration analysis, temperature monitoring, and oil analysis. These techniques can help identify any abnormal conditions, such as excessive vibration, increased temperatures, or the presence of contaminants or wear particles in the lubricant. Regular analysis and monitoring can aid in detecting potential issues early and taking appropriate corrective actions.
- Repair and Replacement: If any signs of wear, damage, or abnormal conditions are detected during inspections or monitoring, take prompt action to address the issues. Depending on the severity of the problem, this may involve repairing or replacing worn or damaged components, such as gear teeth, bearings, or seals. Follow the manufacturer’s guidelines and consult with qualified technicians or professionals for any necessary repair or replacement procedures.
- Documentation and Record-keeping: Maintain accurate documentation and records of all maintenance and service activities performed on the herringbone gear system. This includes inspection reports, lubrication records, repair or replacement history, and any other relevant information. These records can serve as a reference for future maintenance, help track the gear system’s performance, and aid in troubleshooting or warranty claims if needed.
It is important to note that the specific maintenance and service requirements may vary depending on the gear system design, application, and operating conditions. Always refer to the manufacturer’s guidelines, technical documentation, and any applicable industry standards for the recommended maintenance practices and service intervals specific to your herringbone gear system.
How do herringbone gears differ from other types of gears?
Herringbone gears, also known as double helical gears, possess distinct characteristics that set them apart from other types of gears. Here’s a detailed explanation of how herringbone gears differ from other gears:
1. Tooth Design: Herringbone gears have a unique V-shaped or herringbone-shaped tooth profile. This design is formed by two helical gear sections that are mirror images of each other. In contrast, other gears, such as spur gears, helical gears, bevel gears, or worm gears, have different tooth profiles and configurations.
2. Axial Thrust Elimination: One of the key differentiating factors of herringbone gears is their ability to eliminate or greatly reduce axial thrust forces. In helical gears, the helix angle of the teeth generates an axial force during rotation, requiring the use of thrust bearings to counteract the thrust loads. Herringbone gears, with their double helix design, have opposing helix angles that cancel out the axial forces, eliminating the need for thrust bearings.
3. Noisy Cancellation: Herringbone gears are known for their noise-canceling properties. The opposing helix angles of the two gear sections help reduce vibrations and noise during operation. This is particularly beneficial in applications where noise reduction is critical, such as printing presses or precision machinery.
4. Increased Load Capacity: The V-shaped tooth profile of herringbone gears provides increased tooth contact area compared to other gears with straight or helical teeth. This increased contact area improves load distribution and allows herringbone gears to handle higher torque loads, resulting in an increased load-carrying capacity.
5. Bidirectional Power Transmission: Herringbone gears are designed to transmit power bidirectionally. The symmetrical tooth profiles of herringbone gears enable power transmission in both directions, making them suitable for applications where reversing or bidirectional power transfer is required.
6. Smooth Operation: Due to their double helix design, herringbone gears provide smooth and gradual tooth engagement. This gradual meshing reduces sliding friction, minimizes backlash, and ensures a continuous transfer of power. This characteristic makes herringbone gears desirable in applications where smooth operation and high efficiency are crucial.
7. Complex Manufacturing: Herringbone gears have a more complex manufacturing process compared to some other gear types. The creation of the herringbone tooth profile requires specific machining techniques and precision to ensure proper meshing and alignment of the gear sections.
It’s important to note that the selection of gear type depends on the specific requirements of the application. While herringbone gears offer unique advantages, other gear types may be more suitable in certain scenarios based on factors such as space limitations, cost, torque requirements, and operating conditions.
In summary, herringbone gears stand out with their distinctive tooth design, axial thrust elimination, noise-canceling properties, increased load capacity, bidirectional power transmission, smooth operation, and complex manufacturing process, making them well-suited for various industrial applications.
editor by CX 2023-10-07