China Custom Professional Production Bevel Gear Pinion for Hino CZPT Wheel Pinion with Good quality

Product Description

Professional production bevel gear pinion for Hino CHINAMFG Wheel Pinion 

 

Mechanical Equipment parts Bevel Gears

Bevel gears are useful when the direction of a shaft’s rotation needs to be changed. They are usually mounted on shafts that are 90 degrees apart, but can be designed to work at other angles as well.The teeth on bevel gears can be straight, spiral or hypoid. Straight bevel gear teeth actually have the same problem as straight spur gear teeth — as each tooth engages, it impacts the corresponding tooth all at once

High quality gear supplier

1.precise manufacturing processes and strict quality control, our factory can create excellent quality.
2.We have standard product supply and rich experience in producing non-standard products.
3.The more you order, the cheaper the price would be. 
4.we are honored to offer you samples for approval.
5.manufactures all series of spur gears, helical gears, bevel gears, gear racks, and some other similar transmission parts. All the products are designed according to international standard, in accordance with ANSI and ISO standards. 

Tolerance

0.003mm-0.01mm

Surface finish

Based on customer requirements, we can do Plating(Zinc plated, Nickel plated, Chrome plated,etc), polishing(precision can reach +/-0.005mm), knurling, anodizing, Black Oxide, heat treatment, sandblasting, powder coating, etc.

Precision processing

turning, milling, drilling, grinding, wire-EDM cutting etc

 

Material range

Metal: Stainless Steel, Brass,Copper, Brozone, Aluminum, Steel, Carbon Steel etc.

Plastic : PU, PVC, POM, PMMA, Nylon ,HDPE etc.

 

 

QC(inspection everywhere)

 

– Technicians self-check in production

– Engineer spot check in production.

– QC inspect after products finished

– International sales who were trained the technical know-how spot check before shipping to ensure the quality.

MOQ

1-100pcs

Payment

30% in advance, 70% before shipment

Industry application

Appliance/ Automotive/ Agricultural

Electronics/ Industrial/ Marine

Mining/ Hydraulics/ Valves

Oil and Gas/ Electrical/ Construction

 

Model Gear ratio  Module No. of teeth Diraction of spiral Shape Bore Hub dia. Pitch dia. Outside Dia. Mounting distance Total lemgth crown to back length 
AH7 B C D E F G
TBGG2-3571R 1.5 m2 30 R B4 12 35 60 61.06 40 26.60 21.20
TBGG2-2030L 20 L B3 10 30 40 43.55 45 24.91 16.18
TBGG2.5-3571R m2.5 30 R B4 15 45 75 77.09 50 33.86 26.56
TBGG2.5-2030L 20 L B3 12 40 50 54.43 55 30.88 18.98
TBGG3-3571R m3 30 R B4 16 50 90 92.21 50 35.34 26.66
TBGG3-2030L 20 L B3 16 40 60 65.58 70 40.17 26.86
TBGG4-3571R m4 30 R B4 20 70 120 122.85 75 47.48 37.14
TBGG4-2030L 20 L B3 20 60 80 87.34 90 48.17 32.45
TBGG2-4571R 2 m2 40 R B4 12 40 80 80.99 40 32.26 25.99
TBGG2-2040L 20 L B3 12 32 40 40.10 60 34.04 21.02
TBGG2.5-4571R m2.5 40 R B4 15 50 100 101.27 55 39.65 31.27
TBGG2.5-2040L 20 L B3 12 40 50 55.21 75 43.61 26.30
TBGG3-4571R m3 40 R B4 20 60 120 121.48 65 45.76 36.48
TBGG3-2040L 20 L B3 16 50 60 66.06 90 50.63 31.52
TBGG4-4571R m4 40 R B4 20 70 160 162.07 80 53.69 42.07
TBGG4-2040L 20 L B3 20 60 80 88.55 120 66.24 42.12
TBGG2-4515R 3 m2 45 R B4 12 40 90 96.67 40 30.29 26.01
TBGG2-1545L 15 L B3 10 24 30 34.78 60 29.66 15.80
TBGG2.5-4515R m2.5 45 R B4 15 50 112.7 113.32 50 28.25 32.47
TBGG2.5-1545L 15 L B3 12 30 37.5 43.36 75 38.27 19.73
TBGG3-4515R m3 45 R B4 20 60 135 135.99 55 40.59 33.98
TBGG3-1545L 15 L B3 15 38 45 52.08 90 44.98 23.68

HangZhou HUANBALL Professional custom and design precision machined parts. We provide custom complete turnkey precision machining solutions to thousands of customers in diverse markets throughout the world, including medical, automotive, marine, aerospace, defense, precision instrument, home appliance, electronics, machinery, oil & gas, sensors and more. 

We offer customized precision machining service and solutions that help customers meet strict operational demands.Serving a CHINAMFG customer base, we do this with:
    1*Over 100 full time engineers & workers on staff to optimize efficiency and cost saving
    2*Extensive testing to get the sample and mass production right the first time
    3*Comprehensive in-house capabilities to meet all customer needs
    4*Over 30,000 square CHINAMFG of manufacturing plant
    5*Expert design and development for all custom precision machining parts
    6*To better control the quality of the customized parts, we’ve invested substantially in equipment, facilities, and training. Our investments enable us to deliver every order according to specification – on time and on budget.

====================================  FAQ ======================================

1) Q: I haven’t done business with you before, how can i trust your company? 
A: Our company are made-in-china CHINAMFG supplier and passed Field certification by made-in-china. What’s more,we’ve got authority certificates for ISO9001.

2) Q: How is quality ensured?
A:  All our processes strictly adhere to ISO9001:2008 procedures, we have strict quality control from producing to delivery,100% inspection by professional testing centre. Small samples could be provided to you for testing.

3) Q: Can i get 1 or more samples?
A: Yes, sample orders welcomed. 

4) Q: Do you give any discounts?
A: Yes, we’ll surely try my best to help you get the best price and best service at the same time.

5) Q: How to Custom-made(OEM/ODM)?
A: Please send you product drawings or samples to us if you have, and we can custom-made as you requirements.We will also provide professional advices of the products to make the design to be maximize the performance.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car, Printing Machine,Cooling Tower,Power Plant
Hardness: Hardened Tooth Surface
Gear Position: Bevel Gear
Manufacturing Method: Cut Gear
Toothed Portion Shape: Bevel Gear
Material: Stainless Steel, Brass,Copper, Brozone, Aluminum,
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

bevel gear

What are the advantages and disadvantages of using a bevel gear?

Bevel gears offer several advantages and disadvantages when used in mechanical systems. Understanding these pros and cons is crucial for selecting the appropriate gear type for a given application. Here’s a detailed explanation of the advantages and disadvantages of using a bevel gear:

Advantages of Bevel Gears:

  • Power Transmission at Different Angles: Bevel gears are specifically designed to transmit power between intersecting shafts at different angles. They allow for efficient torque transmission and direction changes in applications where the input and output shafts are not parallel. This flexibility makes bevel gears suitable for a wide range of mechanical systems.
  • Compact Design: Bevel gears have a compact and space-efficient design, allowing them to be used in applications with limited space constraints. Their ability to transmit power at an angle helps in optimizing the layout and arrangement of components in machinery and equipment.
  • High Efficiency: Well-designed and properly maintained bevel gears can achieve high power transmission efficiency, typically above 95%. The efficient tooth engagement and load distribution in bevel gears minimize power losses due to friction and mechanical inefficiencies, resulting in energy-efficient operation.
  • Smooth and Quiet Operation: Bevel gears generally provide smooth and quiet operation in properly designed and well-maintained systems. The meshing of the gear teeth is designed to minimize noise and vibration, ensuring smooth power transmission and reducing the need for additional noise-reducing measures.
  • Versatility: Bevel gears are available in various configurations, including straight bevel, spiral bevel, and hypoid bevel gears. This versatility allows them to be used in a wide range of applications across different industries, accommodating different load capacities, speed requirements, and operating conditions.
  • High Load Capacity: Bevel gears are capable of handling high loads and transmitting substantial amounts of torque. Their robust design, accurate tooth engagement, and strong materials make them suitable for heavy-duty applications where reliable power transmission is required.

Disadvantages of Bevel Gears:

  • Complex Manufacturing: Bevel gears are more complex to manufacture compared to other gear types due to their three-dimensional shape and intricate tooth profiles. The manufacturing process involves specialized equipment and expertise, which can increase production costs.
  • Cost: Bevel gears, especially those with high precision and load capacities, can be relatively expensive compared to other types of gears. The cost of materials, manufacturing complexity, and quality requirements contribute to their higher price.
  • Potential for Noise and Vibration: In certain operating conditions, such as high speeds or misaligned gears, bevel gears can generate noise and vibration. This can be mitigated through proper design, accurate manufacturing, and maintenance practices, but additional measures may be necessary to reduce noise and vibration levels in some applications.
  • Sensitive to Misalignment: Bevel gears are sensitive to misalignment, which can lead to increased friction, accelerated wear, and reduced efficiency. Proper alignment and control of backlash are essential for optimal performance and longevity of the gear system.
  • Complex Lubrication: The lubrication of bevel gears can be more challenging compared to parallel-axis gears. Due to their angled tooth engagement, ensuring proper lubrication film thickness and distribution across the gear teeth requires careful consideration. Inadequate or improper lubrication can result in increased friction, wear, and reduced efficiency.

It’s important to consider these advantages and disadvantages of bevel gears in the context of specific applications and operating conditions. Proper design, selection, manufacturing, and maintenance practices can help maximize the benefits of bevel gears while mitigating their limitations.

bevel gear

What are the potential challenges in designing and manufacturing bevel gears?

Designing and manufacturing bevel gears can present several challenges due to their complex geometry, load requirements, and manufacturing processes. Here’s a detailed explanation of the potential challenges:

When it comes to designing and manufacturing bevel gears, the following challenges may arise:

  • Complex Geometry: Bevel gears have intricate geometry with non-parallel and intersecting tooth profiles. Designing bevel gears requires a thorough understanding of gear theory, tooth engagement, and load distribution. The complex geometry poses challenges in determining the optimal tooth profile, tooth contact pattern, and gear ratios for the specific application.
  • Load Analysis and Distribution: Determining the correct load analysis and distribution is crucial to ensure the gears can handle the anticipated forces and torques. Bevel gears often encounter varying loads, including radial loads, axial loads, and bending moments. Accurately predicting and distributing these loads across the gear teeth is essential for achieving proper gear strength, minimizing wear, and preventing premature failure.
  • Manufacturing Precision: Bevel gears require high manufacturing precision to ensure smooth operation, minimal backlash, and efficient power transmission. Achieving the required precision in gear manufacturing involves precise machining, grinding, and heat treatment processes. The complex geometry of bevel gears adds to the manufacturing complexity, necessitating specialized equipment and skilled operators.
  • Alignment Challenges: Proper alignment of bevel gears is critical for optimal performance and longevity. Achieving accurate alignment can be challenging due to the non-parallel shafts and intricate tooth profiles. Misalignment can lead to increased noise, vibration, and premature wear. Design considerations for alignment, as well as careful assembly and alignment procedures during manufacturing, are necessary to address this challenge.
  • Lubrication and Cooling: Bevel gears require effective lubrication to minimize friction, wear, and heat generation. Ensuring proper lubrication and cooling can be challenging due to the unique shape of bevel gears and the limited space available for lubricant circulation. Designing appropriate lubrication systems, selecting suitable lubricants, and considering heat dissipation methods are essential for maintaining optimal gear performance and preventing overheating.
  • Quality Control: Maintaining consistent quality during the manufacturing process is crucial for reliable bevel gears. Implementing robust quality control measures, including dimensional inspections, surface quality assessments, and gear testing, helps ensure that the manufactured gears meet the specified requirements. Consistency in gear quality is essential to minimize variations in performance and to ensure accurate gear meshing and load distribution.

Addressing these challenges requires a combination of engineering expertise, advanced manufacturing techniques, and quality control processes. Collaborating with experienced gear designers, employing state-of-the-art manufacturing technologies, and conducting thorough testing and analysis can help overcome these challenges and produce high-quality bevel gears that meet the performance and durability requirements of the intended application.

bevel gear

How do you calculate the gear ratio of a bevel gear?

Calculating the gear ratio of a bevel gear involves determining the ratio between the number of teeth on the driving gear (pinion) and the driven gear (crown gear). Here’s a detailed explanation of how to calculate the gear ratio of a bevel gear:

The gear ratio is determined by the relationship between the number of teeth on the pinion and the crown gear. The gear ratio is defined as the ratio of the number of teeth on the driven gear (crown gear) to the number of teeth on the driving gear (pinion). It can be calculated using the following formula:

Gear Ratio = Number of Teeth on Crown Gear / Number of Teeth on Pinion Gear

For example, let’s consider a bevel gear system with a crown gear that has 40 teeth and a pinion gear with 10 teeth. The gear ratio can be calculated as follows:

Gear Ratio = 40 / 10 = 4

In this example, the gear ratio is 4:1, which means that for every four revolutions of the driving gear (pinion), the driven gear (crown gear) completes one revolution.

It’s important to note that the gear ratio can also be expressed as a decimal or a percentage. For the example above, the gear ratio can be expressed as 4 or 400%.

Calculating the gear ratio is essential for understanding the speed relationship and torque transmission between the driving and driven gears in a bevel gear system. The gear ratio determines the relative rotational speed and torque amplification or reduction between the gears.

It’s worth mentioning that the gear ratio calculation assumes ideal geometries and does not consider factors such as backlash, efficiency losses, or any other system-specific considerations. In practical applications, it’s advisable to consider these factors and consult gear manufacturers or engineers for more accurate calculations and gear selection.

In summary, the gear ratio of a bevel gear is determined by dividing the number of teeth on the crown gear by the number of teeth on the pinion gear. The gear ratio defines the speed and torque relationship between the driving and driven gears in a bevel gear system.

China Custom Professional Production Bevel Gear Pinion for Hino CZPT Wheel Pinion with Good qualityChina Custom Professional Production Bevel Gear Pinion for Hino CZPT Wheel Pinion with Good quality
editor by CX 2024-04-17