China Custom Worm & Worm Gear Screw for Worm Gearbox and Motor Reductor wholesaler

Product Description

SMRV series worm-gear speed reducer is a new-generation of products developed by our company with combination of advanced by technology both at home and abroad.

Characteristics:
(1)Large output torque
(2) Safe, reliable, economical and durable
(3) Stable transmission, quiet operation
(4) High heat-radiating efficiency, high carrying ability
(5) Combination of 2 single-step worm gear speed reducers, meeting the requirements of super speed ratio
(6) Mechanical gearboxes are widely used in the sectors,like foodstuff, ceramics, and chemical manufacturing, as well as packing, printing, dyeing and plastics
 Technical data:
(1) Motor input power:0.06kw-15kw
(2)  Output torque:4-2320N.M
(3)  Speed ratio of worm gear peed reducer: 5/10/15/20/25/30/40/50/60/80/100
(4)  With IEC motor input flange: 56B14/71B14/80B5/90B5
 Materials:
(1)   NMRV571-NMRV090: Aluminium alloy housing
(2)   NMRV110-150: Cast iron housing
(3)   Bearing: CHINAMFG bearing & Homemade bearing
(4)   Lubricant: Synthetic & Mineral
(5)  The material of the worm mandrel is HT250, and the worm ring gear is ZQSn10-1.
(6)  With high quality homemade bearings, assembled CHINAMFG oil seals & filled with high quality lubricant.
Operation&mantenance
(1)When worm speed reducer starts to work up to200-400 hours, its lubricant should be replaced.
(2)The gearbox need to replace the oil after 4000 hours.
(3)Worm reduction gearbox is fully filled with lubricant oil after finshed assembly.
(4)Lubricanting oil should be kept enough in the casing and checked at a fixed time.
 Color:
(1)   Blue / Light blue
(2)   Silvery White
 Quality control
(1)  Quality guarantee: 1 year
(2)  Certificate of quality: ISO9001:2000
(3)   Every product must be tested before sending

Motor power  Model speed ratio output speed output toruqe
0.06kw 1400rpm NMRV030 5 280rpm  2.0N.M
NMRV030 7.5 186rpm  2.6N.M
NMRV030 10 140rpm  3.3N.M
NMRV030 15 94rpm  4.7N.M
NMRV030 20 70rpm  5.9N.M
NMRV030 25 56rpm  6.8N.M
NMRV030 30 47rpm  7.9N.M
NMRV030 40 35rpm  9.7N.M
NMRV030 50 28rpm 11.0N.M
NMRV030 60 24rpm 12.0N.M
NMRV030 80 18rpm 14.0N.M
0.09kw 1400rpm NMRV030 5 280rpm  2.7N.M
NMRV030 7.5 186rpm  3.9N.M
NMRV030 10 140rpm  5.0N.M
NMRV030 15 94rpm  7.0N.M
NMRV030 20 70rpm  8.8N.M
NMRV030 25 56rpm 10.0N.M
NMRV030 30 47rpm 12.0N.M
NMRV030 40 35rpm 14.0N.M
NMRV030 50 28rpm 17.0N.M
NMRV030 60 24rpm 18.0N.M
0.12kw 1400rpm NMRV030 5 280rpm  3.6N.M
NMRV030 7.5 186rpm  5.2N.M
NMRV030 10 140rpm  6.6N.M
NMRV030 15 94rpm  9.3N.M
NMRV030 20 70rpm 12.0N.M
NMRV030 25 56rpm 14.0N.M
NMRV030 30 47rpm 16.0N.M
NMRV030 40 35rpm 19.0N.M
NMRV030 50 28rpm 22.0N.M
0.18kw 1400rpm NMRV030 5 280rpm  5.3N.M
NMRV030 7.5 186rpm  7.7N.M
NMRV030 10 140rpm 10.0N.M
NMRV030 15 94rpm 14.0N.M
NMRV030 20 70rpm 18.0N.M
NMRV030 25 56rpm 20.0N.M
NMRV030 30 47rpm 24.0N.M

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industry
Hardness: Hardened
Type: Worm and Wormwheel
Output Speed: 14-280rpm
Input Speed: 1400rpm
Ouput Torque: 2.6-1195n.M
Customization:
Available

|

Customized Request

screw gear

Can you provide examples of machinery that use screw gears?

Screw gears, also known as worm gears, are widely used in various machinery and mechanical systems. These gears offer advantages such as high gear ratios, compact design, and smooth torque transmission. Here are some examples of machinery that commonly utilize screw gears:

  • Elevators: Screw gears are commonly employed in elevator systems to provide vertical movement. The worm gear and worm wheel arrangement allows for controlled and precise lifting and lowering of the elevator car.
  • Conveyors: Screw gears are utilized in conveyor systems to transport materials or products horizontally or at an incline. The screw gear system ensures smooth and efficient movement of the conveyor belt or other conveying elements.
  • Automotive Applications: Screw gears are found in various automotive applications, including power windows, convertible tops, and seat adjusters. They enable the conversion of rotational motion into linear motion, allowing for precise control and adjustment of these components.
  • Mechanical Presses: Screw gears are used in mechanical presses to generate high forces for operations such as metal forming, stamping, and pressing. The screw gear system provides the necessary torque and power transmission required for these heavy-duty applications.
  • Valve Actuators: Screw gears are employed in valve actuators to control the opening and closing of valves in industrial processes. The worm gear mechanism allows for precise and reliable valve positioning and control.
  • Packaging Machinery: Screw gears are utilized in packaging machinery, such as filling machines and capping machines, to control the movement and positioning of packaging components. They ensure accurate and synchronized operations during the packaging process.
  • Machine Tools: Screw gears are commonly found in machine tools, including milling machines, lathes, and precision equipment. They enable precise control of the tool movement, feeds, and positioning, ensuring accurate machining operations.
  • Constructions Machinery: Screw gears are used in construction machinery, such as cranes and lifting equipment, to control the movement of load-carrying components. The worm gear system provides the necessary torque and stability required for lifting heavy loads.
  • Food Processing Equipment: Screw gears are employed in food processing equipment, such as mixers and extruders, to control the mixing, blending, and extrusion processes. They ensure accurate and consistent product quality and texture.
  • Robotic Systems: Screw gears are utilized in robotic systems for various applications, including robotic arms and grippers. They enable precise and controlled movement, allowing robots to perform complex tasks with accuracy.

These are just a few examples of the many machinery and systems that utilize screw gears. Their versatility and ability to provide precise motion control make them suitable for a wide range of industrial and mechanical applications.

screw gear

How do you ensure proper alignment when connecting screw gears?

Ensuring proper alignment when connecting screw gears is crucial for their efficient and reliable operation. Proper alignment helps minimize noise, vibrations, and premature wear, resulting in improved performance and longevity of the gear system. Here’s a detailed explanation of how to ensure proper alignment when connecting screw gears:

  • Use Precision Machining: Achieving accurate alignment starts with precision machining of the gear components. The worm gear and worm wheel should be machined to tight tolerances, ensuring proper tooth profile, pitch, and concentricity. High-quality manufacturing processes help ensure the components are dimensionally accurate, which facilitates proper alignment.
  • Consider Mounting Configuration: The mounting configuration plays a significant role in aligning screw gears. Whether the gear system is mounted on a shaft or a frame, it is important to carefully follow the manufacturer’s guidelines or engineering specifications for proper mounting. This may involve using specific mounting hardware, such as flanges, couplings, or adapters, to ensure secure and precise alignment.
  • Verify Axial Alignment: Axial alignment refers to the alignment of the worm gear and the worm wheel along the gear’s axis of rotation. To verify axial alignment, measurements such as center distance, parallelism, and axial runout should be taken. Precision measuring tools, such as dial indicators or laser alignment systems, can be used to ensure the components are aligned within the specified tolerances.
  • Check Radial Alignment: Radial alignment refers to the alignment of the worm gear and the worm wheel in the radial direction. It ensures that the gear meshing occurs at the proper contact point along the gear teeth. Radial alignment can be checked by measuring the radial runout or tooth contact pattern. Adjustments can be made by shimming or using spacers to achieve the desired alignment.
  • Consider Preloading: Preloading the screw gear system can help improve alignment and reduce backlash. Preloading involves applying a controlled axial force to the gear components to eliminate any clearance or play between the teeth. This can be achieved through various methods, such as using adjustable bearings or applying a preloaded spring mechanism. Preloading should be done within the manufacturer’s recommendations to avoid excessive loading that could lead to premature wear or damage.
  • Follow Manufacturer Guidelines: Manufacturers often provide specific guidelines and recommendations for aligning their screw gear products. These guidelines may include recommended tolerances, alignment procedures, and suggested tools or techniques. It is important to carefully review and follow these guidelines to ensure proper alignment and to maintain any warranty or support provided by the manufacturer.
  • Consult with Experts: If you are unsure about the alignment process or encounter challenges in aligning screw gears, it is beneficial to consult with experts or experienced engineers. They can provide guidance, troubleshooting assistance, or even perform precision alignment using specialized equipment or techniques.

By following these practices and taking the necessary alignment measures, you can ensure proper alignment when connecting screw gears. This alignment process helps optimize the performance, efficiency, and service life of the gear system.

screw gear

How do you choose the right size screw gear for your application?

Choosing the right size screw gear for your application involves considering several factors to ensure optimal performance and compatibility. Here are the key steps to follow when selecting a screw gear:

  1. Determine the Application Requirements: Start by understanding the specific requirements of your application. Consider factors such as the desired gear reduction ratio, torque requirements, rotational speed, load capacity, and precision positioning needs. Having a clear understanding of your application’s requirements will help guide the selection process.
  2. Calculate the Gear Ratio: Determine the required gear reduction ratio by considering the speed and torque specifications of your application. The gear reduction ratio is calculated by dividing the input speed by the output speed. This ratio will help narrow down the options for suitable screw gears.
  3. Evaluate Load Capacity: Assess the load capacity requirements of your application. Consider the maximum load that the screw gear needs to handle. This includes both the static load (the load when the system is at rest) and the dynamic load (the load during operation). Ensure that the selected screw gear can handle the anticipated loads without experiencing excessive wear or failure.
  4. Consider Torque Requirements: Determine the required torque output of the screw gear to meet the demands of your application. Calculate the torque by multiplying the load torque by the gear reduction ratio. Ensure that the selected screw gear can provide the necessary torque output to drive the load effectively.
  5. Analyze Speed and Efficiency: Evaluate the desired rotational speed and efficiency of the screw gear system. Consider the input speed, output speed, and efficiency requirements of your application. Ensure that the selected screw gear can operate within the desired speed range while maintaining the required efficiency levels.
  6. Check Mounting and Space Constraints: Assess the available space and mounting requirements in your application. Consider factors such as the required size, shape, and mounting configuration of the screw gear. Ensure that the selected screw gear can be properly installed and integrated into your application without any space or mounting constraints.
  7. Consider Material and Lubrication: Evaluate the environmental conditions and operating parameters of your application. Consider factors such as temperature, humidity, exposure to contaminants, and the need for corrosion resistance. Select a screw gear made from materials suitable for the application environment. Additionally, consider the lubrication requirements and ensure that the selected screw gear can be adequately lubricated for smooth operation and reduced wear.
  8. Consult Manufacturers and Suppliers: Seek advice and consult with manufacturers or suppliers of screw gears. They can provide valuable insights and recommendations based on their expertise and product knowledge. Provide them with the specific details of your application requirements for better guidance in selecting the appropriate screw gear.

By following these steps and considering the factors mentioned, you can choose the right size screw gear that matches the requirements of your application. It is crucial to ensure that the selected screw gear can handle the load, provide the necessary torque and speed, fit within the available space, and operate effectively in the application environment.

China Custom Worm & Worm Gear Screw for Worm Gearbox and Motor Reductor wholesaler China Custom Worm & Worm Gear Screw for Worm Gearbox and Motor Reductor wholesaler
editor by CX 2024-03-26