China factory High Precision Ball Screw Jack Worm Gear Screw Jack Ball Screw Jack with high quality

Product Description

SWL series skillful manufacture screw reducer: 

1.Convenient to adjust
2.Wide range of ratio
3.Easy to install
4.high torque

Application Industries:
Our SWL series screw jacks are widely used in the industries such as metallurgy,mining,hoisting and transportation, electrical power,energy source,constrction and building material,light industry and traffice industry
 

Product Parameters

Type

Model

Screw thread size

Max
lifting strength
kN

Max
pull force
kN

Weight without stroke
kg

Screw weight
per 100mm

SWL

Screw jack

SWL2.5

Tr30*6

25

25

7.3

0.45

SWL5

Tr40*7

50

50

16.2

0.82

SWL10/15

Tr58*12

100/150

99

25

1.67

SWL20

Tr65*12

200

166

36

2.15

SWL25

Tr90*16

250

250

70.5

4.15

SWL35

Tr100*18

350

350

87

5.20

SWL50

Tr120*20

500

500

420

7.45

SWL100

Tr160*23

1000

1000

1571

13.6

SWL120

Tr180*25

1200

1200

1350

17.3

1.Compact structure,Small size.Easy mounting,varied types.  Can be applied in 1 unit or multiple units.

2.High reliability.Long service life; With the function of   ascending,descending,thrusting,overturning

3.Wide motivity.It can be drived by  electrical motor and manual force.

4.It is usually used in low speed situation,widely used in the fields of
metallurgy,mechanical,construction,chemical,irrigation works,mediat treatment.

 

Detailed Photos

PRODUCT SPECIFICATIONS

SWL Series

Swl series worm screw lift is a kind of basic lifting component, which can lift, lower, propel, turn and other functions through the worm drive screw.
Screw jack can be widely used in machinery, metallurgy, construction, chemical, medical, cultural and health, and other industries. Can according to a certain procedure to accurately control the adjustment of the height of ascension or propulsion, can be directly driven by motor or other power, can also be manually. This series of worm screw lift can be self-locking, with the bearing capacity ranging from 2.5 tons to 120 tons, the maximum input speed of 1500 r/min, and the max lifting speed of 2.7 m/min.

Features:

1. Suitable for heavy load, low speed and low frequency;

2. Main components: precision trapezoid screw pair and high precision worm gear pair.

3. Compact design, small volume, light weight, wide drive sources, low noise, easy operation, convenient
maintenance.

4. The trapezoid screw has self-locking function, it can hold up load without braking device when screw stops traveling.

5. The lifting height can be adjusted according to customer requirements.

6. Widely applied in industries such as machinery, metellurgy, construction and hydraulic equipment.

7. Top End: top plate, clevis end, threaded end, plain end, forked head and rod end.

1. screw rod

2. nut bolt

3. cover

4.Skeleton oil seal

5.Bearing

6.Worm gear

7.Oil filling hole

8.Case

9.Skeleton oil seal

10.Cover

11. nut bolt

12.Bearing

13.Skeleton oil seal

14.Bearing

15.worm

16.Flat key

17.Bearing

18.Skeleton oil seal

19.Cover

20.Nut bolt

Product Description

MODEL

 

SWL2.5

SWL5

SWL10

SWL15

SWL20

SWL25

SWL35

Maximum lifting force (kN)

 

25

50

100

150

200

250

350

Screw thread size

 

Tr30*6

Tr40*7

Tr58*12

Tr58*12

Tr65*12

Tr90*16

Tr100*20

Maximum tension (kN)

 

25

50

99

166

250

350

Worm gear ratio (mm)

P

1/6

1/8

3/23

1/8

3/32

3/32

 

M

1/24

1/24

1/24

1/24

1/32

1/32

Worm non rotating stroke (mm)

P

1.0

0.875

1.565

1.56

1.5

1.875

M

0.250

0.292

0.5

0.5

0.5

0.625

Maximum elongation of screw rod under tensile load (mm)

 

1500

2000

2500

3000

3500

4000

Maximum lifting height at maximum pressure load (mm)

The head of the screw rod is not guided

250

385

500

400

490

850

820

Lead screw head guide

400

770

1000

800

980

1700

1640

Worm torque at full load(N.m)

P

18

39.5

119

179

240

366

464

M

8.86

19.8

60

90

122

217

253

efficiency(%)

P

22

23

20.5

 

19.5

16

18

M

11

11.5

13

 

12.8

9

11

Weight without stroke(kg)

 

7.3

16.2

25

 

36

70.5

87

Weight of screw rod per 100mm(kg)

 

0.45

0.82

1.67

 

2.15

4.15

5.20

SWL Worm Gear Screw Jack Mounting Dimensions

 

Standard or Nonstandard: Nonstandard
Application: Textile Machinery, Garment Machinery, Conveyer Equipment, Electric Cars, Motorcycle, Food Machinery, Marine, Mining Equipment, Agricultural Machinery, Car, Power Transmission
Input Speed: 8-360rpm
Gear Material: Low Carbon High Alloy Steel
Gearing Arrangement: Worm
Mounting Position: Horizontal (Foot Mounted) or Vertical (Flange Moun
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

screw gear

What is the purpose of using screw gears in machinery?

Screw gears, also known as worm gears, serve various purposes in machinery and mechanical systems. They offer unique advantages that make them suitable for specific applications. Here’s a detailed explanation of the purposes and benefits of using screw gears:

  • High Gear Reduction: One of the primary purposes of using screw gears is to achieve high gear reduction. Screw gears provide a significant reduction ratio, allowing for the conversion of high-speed, low-torque input to low-speed, high-torque output. This makes them ideal for applications that require precise control over torque and rotational speed, such as lifting heavy loads, positioning systems, and machinery with high torque requirements.
  • Precise Positioning: Screw gears enable precise positioning and control of linear or rotary motion. The fine-pitch threads on the worm and the corresponding worm wheel teeth allow for accurate and controlled motion. This feature makes screw gears suitable for applications that require precise positioning, such as robotics, automation, and machinery that performs intricate movements or adjustments.
  • Self-Locking: Screw gears have a self-locking property, which means that the gear mechanism remains fixed in position even when no external force is applied. The friction between the screw threads and the worm wheel prevents the system from backdriving or rotating unintentionally. This self-locking feature eliminates the need for additional braking mechanisms or external locks, making screw gears advantageous in applications where holding a position is essential for safety and stability.
  • Compact Design: Screw gears have a compact design that makes them suitable for applications with limited space. The worm and worm wheel arrangement allows for efficient power transmission in a compact layout, enabling the integration of screw gears in machinery and systems where space is a constraint. This compact design also simplifies installation and reduces the overall footprint of the equipment.
  • Quiet and Smooth Operation: Screw gears operate with reduced noise and vibration compared to other gear types. The helical nature of the threads and the sliding/rolling contact between the worm and worm wheel result in a smooth and gradual meshing motion. This smooth operation contributes to quieter machinery, making screw gears desirable in applications where noise reduction is important, such as in residential environments, audio equipment, and precision instruments.
  • High Shock Load Resistance: Screw gears are known for their ability to handle shock loads effectively. The helical shape of the threads and the larger contact area between the worm and the worm wheel distribute the load more evenly, reducing the risk of sudden failures or damage due to shock or impact loads. This shock load resistance makes screw gears suitable for applications that involve sudden changes in load or external forces.
  • Reliability and Durability: Screw gears are recognized for their reliability and durability. The simplicity of their design, with fewer moving parts, reduces the likelihood of mechanical failures. Additionally, the self-locking feature minimizes the chances of unwanted movement or slippage. When properly lubricated and maintained, screw gears can have a long service life and require minimal maintenance, contributing to the overall reliability of machinery.
  • Wide Range of Applications: Screw gears find application in various industries and machinery types. They are utilized in manufacturing equipment, robotics, medical devices, automotive systems, elevators, material handling machinery, and many other systems that require precise control, high torque, compactness, and reliable power transmission.

The purpose of using screw gears in machinery is to provide efficient power transmission, precise positioning, high torque multiplication, self-locking capabilities, and reliable operation. These features make screw gears a valuable component in numerous applications, enhancing performance, safety, and overall functionality of machinery and mechanical systems.

screw gear

Can screw gears be used in automotive applications?

Yes, screw gears, also known as worm gears, can be used in various automotive applications. While other types of gears, such as spur gears and helical gears, are more commonly found in automotive systems, screw gears offer certain advantages that make them suitable for specific automotive applications. Here’s a detailed explanation of using screw gears in automotive applications:

  • Steering Systems: Screw gears are commonly used in automotive steering systems, particularly in rack and pinion steering systems. The worm gear and worm wheel arrangement provides a compact and efficient means of converting rotational motion into linear motion, allowing for precise and responsive steering control. Screw gears in steering systems can offer enhanced safety, reliability, and ease of operation.
  • Convertible Roof Mechanisms: Screw gears can be utilized in convertible roof mechanisms to facilitate the opening and closing of the roof. The self-locking characteristic of screw gears is advantageous in this application, as it helps to hold the roof securely in place without the need for additional locking mechanisms. Screw gears can provide smooth and controlled operation, ensuring reliable and convenient roof operation in convertible vehicles.
  • Power Seats and Adjustable Pedals: Automotive power seats and adjustable pedals often employ screw gears to enable precise positioning adjustments. The compact design and precise motion control of screw gears make them suitable for these applications. Screw gears can offer smooth and accurate seat adjustments, enhancing comfort and ergonomics for the vehicle occupants.
  • Accessory Drives: Screw gears can be utilized in automotive accessory drives, such as windshield wiper systems and HVAC (Heating, Ventilation, and Air Conditioning) systems. The self-locking feature of screw gears can be beneficial in maintaining the position of the wiper arms or controlling the position of HVAC blend doors. Screw gears can provide reliable and precise motion control for these auxiliary systems.
  • Brake Systems: Screw gears can be employed in certain automotive brake systems, such as parking brake mechanisms. The self-locking property of screw gears can help hold the brake in the engaged position, providing additional safety and preventing unintended movement. Screw gears in brake systems can contribute to reliable parking brake operation and vehicle stability while parked.
  • Electric Vehicle Applications: With the rise of electric vehicles (EVs), screw gears are being considered for various EV applications. They can be used in electric power steering systems, electric vehicle range extenders, and other drivetrain components. Screw gears can provide efficient power transmission and precise control, supporting the performance and functionality of electric vehicles.
  • Other Specific Applications: Screw gears can find application in other specialized automotive systems, depending on the specific requirements. For example, they may be used in adjustable headlight leveling systems, throttle control mechanisms, or other systems that require precise motion control and position holding.

While screw gears may not be as prevalent in automotive applications compared to other gear types, they offer unique characteristics that make them suitable for specific functions. By considering the design requirements, load conditions, and operational parameters, screw gears can be effectively employed in automotive systems to enhance functionality, safety, and user experience.

screw gear

What is a screw gear and how does it work?

A screw gear, also known as a worm gear, is a type of gear mechanism that consists of a screw-like gear (called the worm) and a toothed wheel (called the worm wheel or worm gear). The screw gear operates on the principle of a helical screw driving a toothed wheel to transmit rotational motion and power. Here is a detailed explanation of how a screw gear works:

  1. Configuration: The screw gear consists of two main components: the worm and the worm wheel. The worm is a cylindrical gear with a helical thread wrapped around it, resembling a screw. The worm wheel is a toothed wheel that meshes with the worm. The orientation of the helical thread on the worm and the teeth on the worm wheel is typically perpendicular to each other.
  2. Meshing: The worm and the worm wheel mesh together by engaging the helical thread of the worm with the teeth of the worm wheel. The helical thread on the worm acts as a screw, and as the worm rotates, it drives the rotation of the worm wheel. The teeth on the worm wheel provide the necessary contact points for the meshing action.
  3. Transmitting Motion: When the worm rotates, the helical thread transfers rotational motion to the worm wheel. The helical thread of the worm pushes against the teeth of the worm wheel, causing the worm wheel to rotate. The direction of rotation of the worm wheel depends on the helix angle and the direction of rotation of the worm. The gear ratio between the worm and the worm wheel is determined by the number of teeth on the worm wheel and the pitch of the helical thread on the worm.
  4. Mechanical Advantage: One of the key characteristics of a screw gear is its ability to provide a high mechanical advantage or gear ratio. The helical design of the worm and the worm wheel allows for a large number of teeth to be engaged at any given time, resulting in a high gear ratio. This makes screw gears suitable for applications that require a significant reduction in rotational speed or an increase in torque.
  5. Self-Locking: A unique property of screw gears is their self-locking capability. Due to the helical thread design, the friction between the worm and the worm wheel tends to hold the gear system in place when the worm is not rotating. This self-locking characteristic prevents the worm wheel from backdriving the worm. It provides inherent braking or locking action, making screw gears suitable for applications where holding position or preventing reverse rotation is necessary.
  6. Efficiency and Lubrication: Screw gears generally have lower efficiency compared to other types of gears due to the sliding action between the helical thread and the teeth of the worm wheel. The sliding motion results in higher friction and heat generation. Proper lubrication is essential to minimize wear and improve efficiency. Lubricants with good adhesion and boundary lubrication properties are commonly used for screw gears.

Screw gears are widely used in various applications, including machinery, automotive systems, conveyor systems, lifting equipment, and many others. Their unique characteristics of high gear ratio, self-locking capability, and compact design make them suitable for specific applications where precise motion control, torque multiplication, or holding position is required.

China factory High Precision Ball Screw Jack Worm Gear Screw Jack Ball Screw Jack with high qualityChina factory High Precision Ball Screw Jack Worm Gear Screw Jack Ball Screw Jack with high quality
editor by CX 2023-10-08