China Good quality Heavy Custom Forging Large Diameter Metal Herringbone Cylindrical Gear for Transmission Machines gear cycle

Product Description

Heavy Industry Parts Hot Forging Steel Cylindrical Gear

Description

Product name

Cylindrical Gear

OEM

Acceptable

Materials

45/AISI1045 etc.Carbon Steel
20Cr,40Cr,40MnB,35SiMn,20CrMnTi,30CrMnSi,20Cr2Ni4 etc.Alloy Steel

Max.Size

Diameter≤φ10000mm

Manufacturing
Process

Electroslag Remelting Hot Forging Turning Gear hobbing Gear milling Grinding

Heat Treatment

Normalizing Quenching Tempering Annealing Carburizing Nitriding Induction hardening

Test item and method

Chemical composition: Spectrum Analysis;
Hardness:HRC/HV
Internal defects: ultrasonic flaw detector
Surface defect detection: Magnetic powder detector
Radial run-out: gear radial runout tester
Base tangent length: Gear tooth micrometer
Tooth thickness detection: Tooth thickness vernier caliper
Round rod span detection: Gear span bar distance measuring instrument

Application

Gear Reducer Heavy Industry

OEM/ODM Request Is Very Welcome!

Production Process
We can produce various specifications of gear, meanwhile, we can also provide gear blanks.
 

We have a full set of production processes and testing instruments for forging, heat treatment and machining.
 

We have 5 medium frequency furnaces and 5 electric slag heavy furnaces, which can produce 1 ton-18 tons of various types of alloy steel, with an annual capacity of 10,000 tons. The main characteristics of electroslag remelting are that it can flexibly produce various types of special steel in size and batch, with pure composition, uniform and dense crystal organization.
 

Natural gas digital display computer temperature control heating CHINAMFG can accurately control the heating temperature of raw materials.
 

800T fast forging machine can quickly forge products, 3150T and 5000T oil press can forge heavy-duty axle products. They can guarantee the forging ratio required by the product, and ensure a good metallographic structure.
 

More than 20 digital display resistance furnaces can be used for normalizing, quenching and tempering products, at the same time, there are induction quenching and carburization process, so as to ensure the mechanical performance requirements of the gear

Inspection
SYI regards Quality as the essential part of our business success. Based on your requirements, we have raw material in-coming inspection, process control and pre-shipment inspection. With advanced test equipment such as spectrometer, CMM, tensile strength tester, microscope, hardness tester, etc, CHINAMFG is able to apply sufficient chemical and physical inspection. According to your request, we are also capable to do X-Ray, Magnetic Testing, Ultrasonic Testing and liquid Penetrant Examination.

Company

About Us

SYI provides OEM Casting & Forging services based on your drawings , samples , or just an idea ! After technical analysis and individual QCP for each project , the most suitable manufacture process will be recommended.

SYI starts our business since 1990 ‘ s of machined and un-machined in a variety of industry . We have over 100,000 products till now with the support of a specialized team including 50 engineers , inspectors and customer services .

Cooperative Brand

Processing Object: Metal
Molding Style: Forging
Application: Heavy Industry Machine
Material: Steel
Heat Treatment: Normalizing Quenching Tempering Carburizing Ni
Standard: ASTM
Customization:
Available

|

Customized Request

herringbone gear

What is the lifespan of a typical herringbone gear?

The lifespan of a typical herringbone gear can vary depending on various factors such as operating conditions, load requirements, material quality, maintenance practices, and the specific application. While it is challenging to provide an exact lifespan, here’s a detailed explanation of factors that can influence the lifespan of a herringbone gear:

  • Material Quality: The choice of material for herringbone gears greatly affects their lifespan. High-quality materials with excellent mechanical properties, such as alloy steels or through-hardened steels, are commonly used for herringbone gears. These materials offer good wear resistance, high strength, and improved durability, contributing to a longer gear lifespan.
  • Load and Torque: The magnitude and type of load applied to herringbone gears impact their lifespan. Higher loads and torque levels can accelerate wear and fatigue, shortening the gear lifespan. Properly selecting herringbone gears with an appropriate torque capacity for the specific application is essential to ensure optimal gear performance and longevity.
  • Operating Conditions: The operating conditions, such as temperature, speed, lubrication, and environmental factors, play a significant role in determining the gear lifespan. Adequate lubrication with the right type and amount of lubricant helps reduce friction, wear, and heat generation, extending the gear lifespan. Harsh operating conditions, such as high temperatures or corrosive environments, can accelerate wear and decrease the lifespan of herringbone gears.
  • Maintenance Practices: Regular maintenance and inspection procedures are crucial for maximizing the lifespan of herringbone gears. Scheduled maintenance activities, including lubricant replacement, gear tooth inspection, and alignment checks, help identify and address any potential issues before they can cause significant damage. Timely maintenance and prompt resolution of detected problems contribute to extending the gear lifespan.
  • System Design: The overall system design, including factors such as gear alignment, stiffness, and load distribution, can impact the gear lifespan. Proper gear alignment ensures even load distribution and reduces unnecessary stress on the gear teeth, enhancing their durability. A well-designed gearbox with adequate housing support, shafts, and bearings contributes to a longer gear lifespan by minimizing vibrations, deflection, and misalignment.

Considering the above factors, herringbone gears are known for their durability and ability to handle high loads. With proper material selection, suitable operating conditions, regular maintenance, and a well-designed system, herringbone gears can have a long lifespan. However, it is important to note that the lifespan of a herringbone gear is highly dependent on the specific application and operating conditions, and it may vary from one situation to another.

herringbone gear

Can you provide examples of machinery that use herringbone gears?

Herringbone gears are widely used in various machinery and mechanical systems that require high torque transmission, smooth operation, and reduced noise levels. Here are some examples of machinery and applications where herringbone gears are commonly employed:

  • Marine Propulsion Systems: Herringbone gears are commonly found in marine propulsion systems, including ship engines and marine gearboxes. They are used to transmit power from the engine to the propeller shaft, providing efficient torque transfer and smooth operation in marine vessels.
  • Mining Equipment: Herringbone gears are used in heavy-duty mining equipment, such as crushers, conveyors, and excavators. These gears can handle high loads and provide reliable power transmission in demanding mining operations.
  • Turbines and Power Generation: Herringbone gears are utilized in various power generation applications, including steam turbines and hydroelectric generators. They help transmit torque from the turbine or generator shaft to other components, such as the gearbox or electrical generator, ensuring efficient power generation.
  • Rotating Kilns and Dryers: Herringbone gears are commonly employed in rotating kilns and dryers used in industries such as cement manufacturing and chemical processing. These gears facilitate the rotation of the kiln or dryer, ensuring proper heat distribution and material processing.
  • Metal Rolling Mills: Herringbone gears are utilized in metal rolling mills to transmit power from the motor to the rollers. They enable precise and synchronized movement of the rolls, allowing for the shaping and forming of metal sheets or bars in the rolling process.
  • Paper and Pulp Industry: Herringbone gears are used in machinery and equipment involved in the paper and pulp industry, such as paper machines, pulpers, and digesters. These gears facilitate the movement of various components, including rollers and conveyors, ensuring smooth and efficient paper production processes.
  • Textile Machinery: Herringbone gears find applications in textile machinery, including spinning machines, weaving looms, and knitting machines. They assist in the movement and synchronization of various components, such as spindles, shuttles, and fabric feeders, enabling precise and efficient textile production.
  • Machine Tools: Herringbone gears are utilized in machine tools, such as gear hobbing machines, milling machines, and lathes. These gears help transmit power from the motor to the tooling components, allowing for precise and controlled machining operations.

These examples represent just a few of the many applications where herringbone gears are employed. Herringbone gears are valued for their ability to handle high loads, provide smooth operation, and reduce noise levels, making them suitable for a wide range of machinery and mechanical systems.

herringbone gear

What is a herringbone gear and how does it work?

A herringbone gear, also known as a double helical gear, is a specialized type of gear with a unique tooth design. Here’s a detailed explanation of what a herringbone gear is and how it works:

A herringbone gear consists of two helical gear sections that are mirror images of each other and are joined together to form a V-shaped or herringbone-shaped tooth profile. Unlike conventional helical gears, which have a single helix angle and a continuous spiral tooth profile, herringbone gears have two opposing helix angles, resulting in a “V” shape when viewed from the end.

The primary advantage of the herringbone gear design is its ability to eliminate axial thrust or end thrust forces that are generated in helical gears. In a conventional helical gear, the helix angle of the teeth causes an axial force along the gear’s axis during rotation. This axial force can create significant thrust loads that need to be counteracted using thrust bearings or other mechanisms.

By using the double helix design of herringbone gears, the opposing helix angles cancel out the axial forces generated by each helical section. This cancellation of axial forces eliminates the need for thrust bearings and allows herringbone gears to transmit torque smoothly without axial movement or thrust loads.

When a herringbone gear is in operation, the angled teeth of the two helical sections engage with each other, similar to how helical gears mesh. The contact between the teeth occurs gradually, starting from one end of the gear and progressing towards the other end. The overlapping or interlocking tooth profiles ensure a continuous and smooth transfer of power.

The herringbone gear design offers several advantages:

  • Axial Load Balancing: The opposing helix angles in herringbone gears balance out the axial forces, eliminating the need for thrust bearings and reducing wear on the gear teeth.
  • Increased Load Capacity: The V-shaped tooth profile of herringbone gears provides increased tooth contact area compared to a single helix gear. This leads to improved load distribution and higher load-carrying capacity.
  • Reduced Vibration and Noise: The double helix design of herringbone gears helps cancel out vibrations and reduce noise during operation. The opposing helix angles minimize tooth deflection and ensure smoother engagement between the gear teeth.
  • Bidirectional Power Transmission: Herringbone gears can transmit power in both directions due to their symmetrical tooth profiles. This makes them suitable for applications where reversing or bidirectional power transmission is required.
  • High Efficiency: The continuous and gradual engagement of the herringbone gear teeth results in improved efficiency by reducing sliding friction and minimizing backlash.

Herringbone gears are commonly used in various industrial applications, including power transmission systems, heavy machinery, oil and gas equipment, marine propulsion systems, and high-speed gearboxes. Their unique design and benefits make them well-suited for applications that require high torque transmission, smooth operation, and minimal axial thrust.

China Good quality Heavy Custom Forging Large Diameter Metal Herringbone Cylindrical Gear for Transmission Machines gear cycleChina Good quality Heavy Custom Forging Large Diameter Metal Herringbone Cylindrical Gear for Transmission Machines gear cycle
editor by CX 2023-10-31