China high quality Advance 06 Series Marine Main Propulsion Reduction Gearbox bevel gearbox

Product Description

Advance 06 series marine main propulsion reduction gearbox,; with Advance gearbox list as:;

Model Max Power Input
Speed Rang
Reduction Ration Weight Suitable Engines
06 12.;5/2100 1000-2100 2.;52/3.;05/3.;50 58kg Yanmar TS130/TS155 Hatz E786
16A 33/2000 1000-2000 2.;07/2.;48/2.;95/3.;35/3.;83 84kg MWM D226-2,; Hatz 3M31
MA100A 37/3000 1500-3000 1.;6/2/2.;55/3.;11/3.;59/3.;88 75 Isuzu UM02AB1,; CHINAMFG ME125
MA125 82/3000 1500-3000 2.;03/2.;46/3.;04/3.;57/4.;05
115 Isuzu UM02AB1,; CHINAMFG ME125
MA142 102/2500 1500-3000 1.;97/2.;52/3.;03/3.;54/3.;95/4.;5 140 Cummins 4BTA3.;9-M MWM D226-4
40A 82/2000 750-2000 2.;07/2.;96/3.;44 225 Yanmar ME400L,; Baudouin 4D
MB170 132/2500 1000-2500 1.;97/2.;52/3.;04/3.;96/4.;5/5.;06
240 MWM D226-6,; CHINAMFG ME400L
HC65 163/2500 1000-2500 1.;53/2.;03/2.;5/2.;96 130 6BT5.;9-M
120B   750-1800 2.;03/2.;81/3.;73 400  
120C 340/2500 1000-2500 1.;48/1.;94/2.;45/2.;96/3.;35 225 Cummins NT855-M240,; CAT 3208TA
MV100 408/3000 1500-3000 1.;23/1.;62/2.;07/2.;52/2.;87 220 NT855-M240,; MWM D234 V8
135A 272/2000 1000-2000 2.;03/2.;59/3.;04/3.;62/4.;11/4.;65
470 NT855-M240,; CAT 3406
HCQ138 390/2600 1000-2600 1.;03/1.;5/2.;03/2.;48/2.;95 200 NT855-M240,; CAT 3406
HC138 375/2500 1000-2500 2/2.;52/3/3.;57/4.;05/4.;45 360 6135Ca,; NT855-M240
HCD138 375/2500 1000-2500 5.;05/5.;63/6.;06/6.;47 415 6135Ca,; NT855-M240
HCA138 390/2600 1000-2600 1.;095/1.;28/1.;5/2.;03/2.;52/3 200 NT855-M240,; MWM D234 V8
MB242 350/2500 1000-2500 3.;04/3.;52/3.;95/4.;53/5.;12
385 NT855-M240,; CAT 3406
HC200 440/2200 1000-2200 1.;48/2/2.;28 280 NT855-M240,; CAT 3406TA
HC201 500/2500 1000-2500 2.;46/2.;955/3.;526 350 6135ZLCa,; CHINAMFG NTA855-M400
MB270A 500/2500 1000-2500 4.;05/4.;53/5.;12/5.;5/5.;95/6.;39/6.;82 675 NTA855-M400,; CAT 3406TA
HCQ300 782/2300 1000-2300 1.;05/1.;46/2.;05/2.;38 350 KTA19-M600,; 3412T,; TBD234 V12
300 805/2300 1000-2300 2.;04/2.;54/3/3.;53/4.;1/4.;61/4.;94
740 KTA19-M600,; TBD234 V12
D300 805/2300 1000-2300 4/4.;48/5.;05/5.;52/5.;9/6.;56/7.;06
940 KTA19-M600,; TBD234 V12
T300 759/2300 1000-2300 4.;95/6.;03/6.;65/7.;04/7.;54/8.;02
1120 KTA19-M600,; 3412T,; TBD234 V12
T300/1 611/2300 1000-2300 8.;94/9.;45 1120 KTA19-M600,; 3412T
HCA300 850/2500 1000-2500 1.;5/2/2.;57/2.;95 370 KTA19-M600,; 3412T,; TBD234 V12
M300 850/2300 1000-2300 1.;45/2/2.;52/3.;05/3.;45/3.;94 700 KTA19-M600,; TBD234 V12
MD300 850/2300 1000-2300 3.;96/4.;48/4.;96/5.;52/5.;9 940 KTA19-M600,; TBD234 V12
HCQ400 810/1800 1000-2300 1.;5/2.;04/2.;5/3/3.;42/3.;77/4.;06
1100 KT38-M800,; TBD604BL6,; 3412TA
HC400 810/1800 1000-2300 1.;5/2.;04/2.;5/3/3.;42/3.;77/4.;06
820 3412TA,; TBD604BL6
HCD400A 810/1800 1000-1800 3.;96/4.;33/4.;43/4.;476/4.;7/5/5.;53
1100 KT38-M800,; TBD604BL6
HCT400A 945/2100 1000-2100 6.;09/6.;49/6.;93/7.;42/7.;95/8.;4
1450 KT38-M800,; 6BD604BL6
HCT400A/1 945/2100 1000-2100 8.;15/8.;69/9.;27/10.;6/11.;46/12 1500 KTA38-M800,; 3412TA,; TBD604BL6
HCQ501 1265/2300 1000-2300 1.;03/1.;46/2/2.;45 560 KTA38-M940,; 3508B,; TBD234 V16
HCQ502 1265/2300 1000-2300 2.;95 700 KTA38-M940,; 3508TA,; TBD234 V16
HC600A 1365/2100 1000-2100 2/2.;48/3/3.;58/3.;89 1300 KTA38-M1045,; 3508B,; TBD604B V8
HCD600A 1365/2100 1000-2100 4.;18/4.;43/4.;7/5/5.;44/5.;71 1550 KTA38-M1045,; 3508B,; TBD604B V8
HCT600A 1260/2100 1000-2100 6.;06/6.;49/6.;97/7.;51/8.;04/8.;66/9.;35 1600 KTA38-M940,; 3508TA,; TBD234 V16
HCT600A/1 1260/2100 1000-2100 7.;69/8.;23/8.;82/9.;47/10.;1/10.;8
1700 KTA38-M940,; TBD234 V16
HCD800 1530/1800 1000-1800 3.;429/3.;96/4.;391/4.;905/5.;474/5.;889 1900 6190Z1CZ,; CW6200,; KTA38-M1
HCT800 1530/1800 800-1800 4.;95/5.;57/5.;68/5.;93/6.;43/6.;86
2000 KTA38-M
HCT800-1   800-1800 6.;91/7.;28/7.;69/8.;12/8.;6/9.;12
HC900 1440/1600 600-1600 1.;46/2.;04/2.;47/3/3.;6/4.;08/4.;63/4.;95 1600 12V190DC,; M200
HCT1100 1841/1600 700-1600 5.;6/5.;98/6.;39/6.;85/7.;35/7.;9 3000 CW6200
HC1200   600-1900 2.;03/2.;5/2.;96/3.;55/3.;79/4.;05/4.;2/4.;47 2000  
HC1250 1654/1800 400-1800 2.;03/2.;48/3.;04/3.;48/3.;96 2200 CW8200ZC,; 6210ZL,; Z12V190
HC701 1286/2400 1200-2400 1.;93/2.;58/2.;9/3.;26/3.;91/4.;6/5.;17
2000 KTA38-M2

manufactured by 1 of the biggest gearbox manufacturer in China,; with technologies
introduced from Bosch,; Twindisc,; Eaton,; etc.;
Besides gearbox,; we mainly sell diesel/petrol engines and related spare parts,; with brands
including:; Cummins,; Deutz,; CAT,;Isuzu,; VM,; Toyota,; Mitsubishi,; Suzuki,; Yuchai,;
Weichai,; Changchai,; etc,; for various applications,; such as automobile,; bus,; coach,; van,; truck,;
bulldozer,; forklift,; excavator,; road roller,; wheel loader,; hoister,; generator,; water pump,;
fire pump,; marine main propulsion,; marine auxiliary,; etc.;

Application: Marine, Marine
Hardness: Hardened
Type: Circular Gear
Typical Engines: Yanmar Ts130, Ts155, Hatz E786
Material: Stainless Steel
Overall Dimension: 350*316*482mm

plastic gear

What are the limitations of using plastic gears in industrial settings?

Using plastic gears in industrial settings has certain limitations. Here’s a detailed explanation of these limitations:

  • Lower Load Capacity: Plastic gears generally have lower load-bearing capacities compared to metal gears. They are more susceptible to deformation and wear under heavy loads or high torque conditions. This makes them less suitable for applications that require withstanding substantial forces or transmitting high power.
  • Temperature Sensitivity: Plastic gears have temperature limitations, and their performance can be affected by temperature variations. Some plastic materials may experience dimensional changes, loss of strength, or reduced stiffness at elevated temperatures. Additionally, high temperatures can accelerate wear and reduce the lifespan of plastic gears. Therefore, plastic gears may not be suitable for applications that involve high-temperature environments or extreme temperature fluctuations.
  • Environmental Sensitivity: Plastic gears can be sensitive to certain environmental conditions. Certain plastic materials may degrade or become brittle when exposed to specific chemicals, solvents, oils, or UV radiation. This restricts their use in applications where exposure to harsh chemicals, lubricants, or outdoor elements is common.
  • Wear and Abrasion: While plastic gears can offer good wear resistance, they are generally more prone to wear and abrasion compared to metal gears. Under heavy-load or high-speed conditions, the surface of plastic gears can wear down, leading to a decrease in performance and potential failure over time. Additional measures, such as incorporating reinforcements or using lubrication, may be necessary to mitigate wear in certain applications.
  • Dimensional Stability: Plastic materials can have lower dimensional stability compared to metals. They may experience creep, shrinkage, or expansion over time, which can affect the accuracy and reliability of gear operation, particularly in applications with tight tolerances or precise gear meshing requirements.
  • Impact Resistance: Plastic gears may have limited impact resistance compared to metal gears. They can be more susceptible to damage or fracture when subjected to sudden impact or shock loads. This makes them less suitable for applications with high impact or heavy-duty requirements.
  • Compatibility with Existing Systems: In some cases, replacing metal gears with plastic gears may require modifications to the existing system. Plastic gears may have different dimensions, mounting requirements, or gear ratios compared to metal gears, necessitating design changes or adaptations to accommodate the use of plastic gears.

Despite these limitations, plastic gears can still offer significant advantages in certain industrial settings, such as reduced weight, noise reduction, and cost-effectiveness. It’s crucial to carefully evaluate the specific application requirements and consider the trade-offs between the benefits and limitations of plastic gears when deciding whether they are suitable for a particular industrial setting.

plastic gear

How do plastic gears handle lubrication and wear?

Plastic gears handle lubrication and wear differently compared to metal gears. Here’s a detailed explanation of their behavior:

1. Lubrication in Plastic Gears: Lubrication plays a crucial role in the performance and longevity of plastic gears. While metal gears often require continuous lubrication, plastic gears have different lubrication requirements due to their inherent properties. Here are some key considerations:

  • Self-Lubrication: Some plastic materials, such as certain formulations of polyoxymethylene (POM), have inherent self-lubricating properties. These materials have a low coefficient of friction and can operate with minimal lubrication or even dry. Self-lubricating plastic gears can be advantageous in applications where the use of external lubricants is impractical or undesirable.
  • Lubricant Compatibility: When external lubrication is necessary, it’s important to choose lubricants that are compatible with the specific plastic material used in the gears. Certain lubricants may degrade or adversely affect the mechanical properties of certain plastics. Consultation with lubricant manufacturers or experts can help identify suitable lubricants that won’t cause degradation or wear issues.
  • Reduced Lubricant Requirements: Plastic gears generally have lower friction coefficients compared to metal gears. This reduced friction results in lower heat generation and less wear, which in turn reduces the demand for lubrication. Plastic gears may require less frequent lubricant replenishment or lower lubricant volumes, reducing maintenance requirements.
  • Appropriate Lubricant Application: When applying lubricant to plastic gears, care should be taken to avoid excessive amounts that could lead to contamination or leakage. Lubricants should be applied in a controlled manner, ensuring they reach the critical contact points without excessive buildup or excess spreading beyond the gear surfaces.

2. Wear in Plastic Gears: Plastic gears exhibit different wear characteristics compared to metal gears. While metal gears typically experience gradual wear due to surface interactions, plastic gears may undergo different types of wear mechanisms, including:

  • Adhesive Wear: Adhesive wear can occur in plastic gears when high loads or speeds cause localized melting or deformation at the gear teeth contact points. This can result in material transfer between gear surfaces and increased wear. Proper material selection, gear design optimization, and lubrication can help minimize adhesive wear in plastic gears.
  • Abrasive Wear: Abrasive wear in plastic gears can be caused by the presence of abrasive particles or contaminants in the operating environment. These particles can act as abrasive agents, gradually wearing down the gear surfaces. Implementing effective filtration or sealing mechanisms, along with proper maintenance practices, can help reduce abrasive wear in plastic gears.
  • Fatigue Wear: Plastic materials can exhibit fatigue wear under cyclic loading conditions. Repeated stress and deformation cycles can lead to crack initiation and propagation, ultimately resulting in gear failure. Proper gear design, material selection, and avoiding excessive loads or stress concentrations can help mitigate fatigue wear in plastic gears.

3. Gear Material Selection: The choice of plastic material for gears can significantly impact their lubrication and wear characteristics. Different plastic materials have varying coefficients of friction, wear resistance, and compatibility with lubricants. It’s important to select materials that offer suitable lubrication and wear properties for the specific application requirements.

4. Operational Considerations: Proper operating conditions and practices can also contribute to the effective handling of lubrication and wear in plastic gears. Avoiding excessive loads, controlling operating temperatures within the material’s limits, implementing effective maintenance procedures, and monitoring gear performance are essential for ensuring optimal gear operation and minimizing wear.

In summary, plastic gears can handle lubrication and wear differently compared to metal gears. They may exhibit self-lubricating properties, reduced lubricant requirements, and require careful consideration of lubricant compatibility. Plastic gears can experience different types of wear, including adhesive wear, abrasive wear, and fatigue wear. Proper material selection, gear design, lubrication practices, and operational considerations are crucial for ensuring efficient lubrication and minimizing wear in plastic gears.

plastic gear

How do plastic gears differ from metal gears in terms of performance?

Plastic gears and metal gears exhibit differences in performance characteristics. Here’s a detailed explanation of how plastic gears differ from metal gears:

Strength and Durability:

  • Metal gears are generally stronger and more durable compared to plastic gears. They can withstand higher torque, heavy loads, and harsh operating conditions. Metal gears are commonly used in applications that require high strength and durability, such as heavy machinery, automotive transmissions, and industrial equipment.
  • Plastic gears have lower strength and may not be suitable for applications with high torque or heavy loads. However, advancements in plastic materials and manufacturing techniques have resulted in the development of high-performance plastics that offer improved strength and durability, allowing plastic gears to be used in a wider range of applications.


  • Plastic gears are significantly lighter in weight compared to metal gears. This lightweight characteristic is advantageous in applications where weight reduction is important, as it can contribute to energy efficiency, lower inertia, and reduced wear on supporting components.
  • Metal gears are heavier due to the density and strength of the metal materials used. While the weight of metal gears can provide benefits in certain applications that require high inertia or increased stability, it may also result in additional energy consumption and higher stresses on supporting structures.

Noise and Vibration:

  • Plastic gears have inherent damping properties that help reduce noise and vibration levels during operation. This makes them suitable for applications where noise reduction is desired, such as in consumer electronics or office equipment.
  • Metal gears tend to generate more noise and vibration due to their higher stiffness. While there are methods to reduce noise in metal gears through design modifications and the use of noise-dampening materials, plastic gears generally offer better inherent noise and vibration reduction.

Wear and Lubrication:

  • Plastic gears have the advantage of self-lubrication due to certain plastic materials having inherent lubricating properties. This reduces friction and wear between gear teeth, eliminating the need for external lubrication and simplifying maintenance requirements.
  • Metal gears typically require lubrication to reduce friction and wear. Proper lubrication is essential for their performance and longevity. Insufficient or inadequate lubrication can lead to increased wear, heat generation, and even gear failure.

Corrosion Resistance:

  • Plastic gears can exhibit excellent resistance to corrosion and chemicals, depending on the chosen plastic material. This makes them suitable for applications in corrosive environments where metal gears may suffer from degradation or require additional protective measures.
  • Metal gears may corrode when exposed to moisture, chemicals, or certain operating environments. Corrosion can weaken the gears and compromise their performance and lifespan. However, corrosion-resistant metals or protective coatings can mitigate this issue.

Design Flexibility:

  • Plastic gears offer greater design flexibility compared to metal gears. Plastic materials can be easily molded into complex shapes, allowing for the creation of custom gear profiles and tooth geometries. This design flexibility enables gear optimization for specific applications, improving performance, efficiency, and overall machinery design.
  • Metal gears are more limited in terms of design flexibility due to the constraints of machining or shaping metal materials. While metal gears can still be customized to some extent, the process is generally more time-consuming and costly compared to plastic gear manufacturing.

It’s important to consider these performance differences when selecting between plastic and metal gears for a specific application. The requirements of the application, including load capacity, operating conditions, noise considerations, and durability expectations, should guide the choice of gear material.

China high quality Advance 06 Series Marine Main Propulsion Reduction Gearbox bevel gearboxChina high quality Advance 06 Series Marine Main Propulsion Reduction Gearbox bevel gearbox
editor by CX 2023-10-18