China high quality Spiral Bevel Gears Made of Cast Steel That Are Popular in Chinese Factories with Best Sales
Product Description
1) According to the different strength and performance, we choose the steel with strong compression; 2) Using Germany professional software and our professional engineers to design products with more reasonable size and better performance; 3) We can customize our products according to the needs of our customers,Therefore, the optimal performance of the gear can be exerted under different working conditions; 4) Quality assurance in every step to ensure product quality is controllable.
Product Paramenters
DRIVEN GEAR
NUMBER OF TEETH
24
MODULE
10.6727
LENTH
302
OUTER DIAMETER
ø249
DIRECTION OF SPIRAL
L
ACCURACY OF SPLINE
M55*1.5-6h
NUMBER OF SPLINE
31
DRIVEN GEAR
NUMBER OF TEETH
29
OUTER DIAMETER
ø3 square meter, with building area of 72,000 square meters. More than 500 employees work in our company. We own more than 560 high-precise machining equipments, 10 Klingelnberg Oerlikon gear production lines, 36 Gleason gear production lines, 5 forging production lines 2 german Aichilin and 5 CHINAMFG CHINAMFG advanced automatic continuous heat treatment production lines. With the introducing the advanced Oerlikon C50 and P65 measuring center, we enhence our technology level and improve our product quality a lot. We offer better quality and good after-sale service with low price, which insure the good reputation. With the concept of “for the people, by technology, creativity, for the society, transfering friendship, honest”, we are trying to provice the world-top level product. Our aim is: CHINAMFG Gear,world class, Drive the world. According to the different strength and performance, we choose the steel with strong compression;Using Germany professional software and our professional engineers to design products with more reasonable size and better performance;We can customize our products according to the needs of our customers,Therefore, the optimal performance of the gear can be exerted under different working conditions;Quality assurance in every step to ensure product quality is controllable. Our company had full quality management system and had been certified by ISO9001:2000, QS-9000:1998, ISO/TS16949 , which insure the entrance of international market.
HangZhou CHINAMFG Gear Co., Ltd. adheres to the concept of “people-oriented, prosper with science and technology; create high-quality products, contribute to the society; turn friendship, and contribute sincerely”, and will strive to create world automotive axle spiral bevel gear products.
1.Do you provide samples? Yes,we can offer free sample but not pay the cost of freight. 2.What about OEM? Yes,we can do OEM according to your requirements. 3.How about after-sales service? We have excellent after-sales service if you have any quanlity problem,you can contact us anytime. 4.What about package? Stardard package or customized package as requirements. 5.How to ensure the quanlity of the products? We can provide raw meterial report,metallographic examination and the accuracy testing etc. 6.How long is your delivery time? Genarally it is 4-7 days.If customized it will be take 20 days according to your quantity.
Application:
Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car
Hardness:
Hardened Tooth Surface
Gear Position:
External Gear
Manufacturing Method:
Cast Gear
Toothed Portion Shape:
Herringbone Gear
Material:
Cast Steel
Samples:
US$ 160/Set 1 Set(Min.Order)
|
Request Sample
Customization:
Available
|
Customized Request
What are the benefits of using a herringbone gear mechanism?
Using a herringbone gear mechanism offers several benefits due to its unique design and characteristics. Here’s a detailed explanation of the advantages of using a herringbone gear mechanism:
High Load Capacity: Herringbone gears are capable of handling high torque loads due to their double helical tooth design. The opposing helix angles of the two sides of the gear create a balanced load distribution, allowing for increased load-carrying capacity compared to other gear types. This makes herringbone gears suitable for applications that involve heavy loads and high power transmission requirements.
Bidirectional Power Transmission: Herringbone gears are capable of transmitting power in both directions. The double helical tooth profile cancels out axial thrust forces that would occur in single helical gears, allowing for bidirectional power transfer without the need for additional thrust bearings or special mechanisms. This feature is particularly advantageous in applications where reversible power transmission is required.
Smooth and Quiet Operation: The double helical tooth design of herringbone gears helps to cancel out axial and radial forces, resulting in smooth and quiet operation. The opposing helix angles of the two sides of the gear minimize gear vibrations and reduce noise levels during engagement. This makes herringbone gears suitable for applications where low noise and vibration are desired, such as precision machinery, printing presses, and automotive transmissions.
Improved Gear Tooth Strength: The double helical tooth design of herringbone gears provides enhanced tooth strength compared to single helical gears. The opposing helix angles create a self-centering effect that reduces tooth deflection and improves load distribution along the tooth surfaces. This results in increased tooth strength, reduced wear, and improved overall gear durability, making herringbone gears suitable for high-load and high-speed applications.
Efficient Torque Transfer: Herringbone gears offer efficient torque transfer due to their large contact area and overlapping tooth engagement. The double helical tooth profile provides a larger contact ratio compared to spur gears, resulting in improved power transmission efficiency and reduced stress concentrations on the gear teeth. This efficient torque transfer contributes to the overall performance and energy efficiency of the gear system.
Axial Thrust Elimination: The double helical tooth profile of herringbone gears allows for the cancellation of axial thrust forces. The opposing helix angles create equal and opposite axial forces, effectively eliminating the net axial thrust on the gear shaft. This eliminates the need for additional thrust bearings or special provisions to counteract axial loads, simplifying the gear system design and reducing complexity and cost.
These are some of the key benefits of using a herringbone gear mechanism. Their high load capacity, bidirectional power transmission capability, smooth and quiet operation, improved tooth strength, efficient torque transfer, and axial thrust elimination make them advantageous in a wide range of applications across various industries.
Are herringbone gears suitable for high-torque applications?
Herringbone gears are well-suited for high-torque applications due to their design characteristics and advantages. Here’s a detailed explanation of why herringbone gears are suitable for high-torque applications:
Large Surface Area of Contact: Herringbone gears have a larger surface area of contact between the gear teeth compared to conventional spur gears. This increased contact area allows herringbone gears to distribute the torque load more effectively. The larger contact area helps prevent tooth deflection and distributes the load across a greater number of teeth, resulting in improved torque transmission capabilities.
Higher Torque Capacity: The design of herringbone gears enables them to handle higher torque loads. The opposing helix angles of the teeth in herringbone gears cancel out the axial thrust, which is generated during gear meshing. This cancellation of axial thrust allows herringbone gears to transmit higher torque without the need for additional thrust bearings or mechanisms. The increased torque capacity of herringbone gears makes them suitable for demanding applications that require high torque transfer.
Reduced Gear Tooth Deflection: Herringbone gears exhibit reduced tooth deflection compared to spur gears. The double helical arrangement of the teeth in herringbone gears helps counteract the bending forces that can cause tooth deflection. This characteristic allows herringbone gears to maintain a more precise gear mesh, even under high torque loads. The reduced tooth deflection enhances the overall performance and reliability of herringbone gears in high-torque applications.
Compact Gearbox Design: The high torque capacity of herringbone gears enables the design of more compact gearboxes. The ability to transmit higher torque loads in a smaller package can be advantageous in applications where space is limited. The compact design not only saves space but also reduces the overall weight of the system, making herringbone gears suitable for high-torque applications with size and weight constraints.
Smooth Operation: Herringbone gears provide smooth and precise gear engagement, even under high-torque conditions. The opposing helix angles of the teeth facilitate gradual meshing and unmeshing, reducing impact and shock loads. The smooth operation minimizes vibrations and noise, which is particularly important in high-torque applications where excessive vibrations can lead to premature wear or component failure.
While herringbone gears offer several advantages for high-torque applications, it’s important to consider other factors such as lubrication, gear material, and system design. Proper lubrication and the use of high-strength materials can further enhance the performance and durability of herringbone gears in high-torque applications. Additionally, system design considerations, such as proper alignment, stiffness, and maintenance practices, should be taken into account to ensure optimal performance and longevity of herringbone gears in high-torque scenarios.
What are the applications of herringbone gears?
Herringbone gears, also known as double helical gears, find applications in various industries due to their unique design and advantages. Here’s a detailed explanation of the applications of herringbone gears:
Power Transmission Systems: Herringbone gears are commonly used in power transmission systems that require efficient torque transfer and smooth operation. They are employed in gearboxes, drivetrains, and speed reducers where high torque and bidirectional power transmission are critical.
Heavy Machinery: Herringbone gears are found in heavy machinery such as construction equipment, mining machinery, and industrial machinery. These gears can handle large loads and provide reliable torque transmission, making them suitable for applications that involve heavy-duty operations.
Oil and Gas Industry: The oil and gas industry extensively uses herringbone gears in equipment like pumps, compressors, and turbines. These gears are capable of handling high torque requirements and provide reliable performance in demanding environments.
Marine Propulsion Systems: Herringbone gears are utilized in marine propulsion systems, including ship propulsion drives and propeller shaft arrangements. Their ability to transmit high torque efficiently and smoothly makes them ideal for marine applications.
High-Speed Gearboxes: Herringbone gears are employed in high-speed gearboxes where torque is transmitted at high rotational speeds. They are used in applications such as wind turbine gearboxes, aerospace systems, and high-performance automotive transmissions.
Metalworking Machinery: Herringbone gears are utilized in metalworking machinery, such as milling machines, lathes, and gear cutting machines. These gears provide precise and reliable power transmission, enabling the machinery to perform various machining operations with accuracy.
Railway Systems: Herringbone gears find applications in railway systems, particularly in locomotives and rolling stock. They facilitate efficient power transfer and contribute to smooth and reliable train operation.
Printing Presses: Herringbone gears are used in printing presses to transmit power between different components of the press. Their ability to minimize vibrations and noise is advantageous in printing applications that require precision and high-quality printing results.
Steel Mills: Herringbone gears are employed in steel mills for various applications, including rolling mills, heavy-duty cranes, and gear couplings. These gears withstand the demanding conditions of steel manufacturing, such as high loads, vibrations, and harsh environments.
These are just a few examples of the applications of herringbone gears. Their unique tooth design, load-carrying capacity, bidirectional power transmission capability, and smooth operation make them suitable for a wide range of industries and applications that require efficient and reliable torque transmission.