China Hot selling Air Compressor Stainless Steel Gear Set Metal CZPT bevel gear set

Product Description

Product Details

air compressor stainless steel gear set metal gear wheel

 

Part No.

Product Name

Applied

162257100/1622057100

Gear Wheel

GA22P-10

1622057100/1622002600

Gear Wheel

GA22P-7.5/GA30CP-13

1622057100/162257100

Gear Wheel

GA30CP-7.5/8

16220 0571 0/1622003600

Gear Wheel

GA30CP-10

1622311571/1622311571

Gear Wheel

GA30/1622311034

Gear Wheel

GA37/1622311036

Gear Wheel

GA37/1622311042

Gear Wheel

GA45/1622311044

Gear Wheel

GA45/1622311046

Gear Wheel

GA55/1622311050

Gear Wheel

GA55/1622311054

Gear Wheel

GA75/1622311056

Gear Wheel

GA75/1622311060

Gear Wheel

GA75/1622311064

Gear Wheel

GA55/1622311066

Gear Wheel

 

1614930800/1614930900

Gear Wheel

GA110-7.5

1614931000/1614931100

Gear Wheel

GA110-8

1614931200/1614931300

Gear Wheel

GA110-10

1614932200/1614932300

Gear Wheel

GA132-7.5

1614932400/1614932500

Gear Wheel

GA132-8.5

1614932600/1614932700

Gear Wheel

GA132-10

1614933000/1614933100

Gear Wheel

GA160-7.5

1614933200/1614933300

Gear Wheel

GA160-8.5

1614933600/1614933700

Gear Wheel

GA160-13

162257171/

Gear Wheel

GA75P-10

/162257171

Gear Wheel

GA75P-8/GA90CP-10

1613965000/1613965100

Gear Wheel

GA75P-10

1613817400/1613818000

Gear Wheel

GA37P-10

1613898000/1613898100

Gear Wheel

GA55CP-7.5

1613898200/1613898300

Gear Wheel

GA55CP-710

162257171/

Gear Wheel

GA132-160

1614932200/1614932300

Gear Wheel

GA132-160

1614932500/1614932400

Gear Wheel

GA132-160

Company information

Hongkong CHINAMFG Industry Limited was established in 2000, located in Chang’an town,
HangZhou city– “China National Machinery and Hardware town”
We’re a Hi-Tech company specialize in research, development, manufacture and 
distribution of air compressor sparts. With our rich experience, profession technology
and rigorous quality control, our products are widely used in air compressor field 
with good feedback and continuous orders from more than 2,000 customers in domestic
and oversea market.We can solve any technical problems you may encounter
with your air compressor and provide many kinds of air compressor parts for you.
 

Main products

SCREW AIR COMPRESSOR 

AIR DRYER

Services kits:unloading valve kits, Minimum pressure valve kit,

Stop oil valve kit, check valve kit, thermostat valve kit and more

Valve assembly:air intake valve, thermostat valve, solenoid valve, minimum pressure valve kit, blow off valve, drain valve and more

Rubber parts: hose, coupling, elbow, anti-vibration pad, housing, belt

Sensor: temperature sensor, pressure sensor, oil level sensor

Other parts: gear wheel, controller, temperature switch, pressure switch, cleaning agent

Our services

  • Ø  24 hours a day, 7 days a week
  • Ø  1-stop purchasing
  • Ø  Cheap, fast and efficient
  • Ø  adequate stocks
  • Ø  12 years experiences
  • Ø  Seriously quality control
  • Ø  Superb technique

Contact

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Customized: Non-Customized
Standard Component: Standard Component
Material: Stainless Steel
Category: Gear Wheel
Product Name: Metal Gear Wheel
Application: Air Compressor Gear Wheel
Customization:
Available

|

Customized Request

plastic gear

What are the benefits of using plastic gears over traditional materials?

Using plastic gears instead of traditional materials offers several benefits. Here’s a detailed explanation of the advantages of using plastic gears:

  • Weight Reduction: Plastic gears are significantly lighter in weight compared to gears made from traditional materials such as metal. This lightweight characteristic is advantageous in applications where weight reduction is important, as it can contribute to energy efficiency, lower inertia, and reduced wear on supporting components.
  • Noise and Vibration Reduction: Plastic gears have inherent damping properties that help reduce noise and vibration levels during operation. This makes them suitable for applications where noise reduction is desired, such as in consumer electronics or office equipment. Metal gears, on the other hand, tend to generate more noise and vibration due to their higher stiffness.
  • Self-Lubrication: Certain plastic materials used in gears have inherent lubricating properties, allowing for self-lubrication between gear teeth. This reduces friction and wear, eliminating the need for external lubrication and simplifying maintenance requirements. Metal gears, on the other hand, typically require lubrication to reduce friction and wear.
  • Corrosion Resistance: Plastic gears can exhibit excellent resistance to corrosion and chemicals, depending on the chosen plastic material. This makes them suitable for applications in corrosive environments where metal gears may suffer from degradation or require additional protective measures.
  • Design Flexibility: Plastic gears offer greater design flexibility compared to metal gears. Plastic materials can be easily molded into complex shapes, allowing for the creation of custom gear profiles and tooth geometries. This design flexibility enables gear optimization for specific applications, improving performance, efficiency, and overall machinery design.
  • Cost-Effectiveness: Plastic gears are often more cost-effective compared to gears made from traditional materials. Plastic materials are generally less expensive than metals, and the manufacturing processes for plastic gears, such as injection molding, can be more efficient and economical for large-scale production.
  • Electrical Insulation: Plastic gears offer electrical insulation properties, which can be advantageous in applications where electrical isolation is required. Metal gears, on the other hand, can conduct electricity and may require additional insulation measures in certain situations.
  • Customization and Color Options: Plastic gears can be easily customized in terms of shape, size, color, and surface finish. This allows for branding, aesthetic preferences, or specific identification requirements in various applications. Metal gears, on the other hand, have more limited options for customization.

These benefits make plastic gears attractive alternatives to traditional materials in many applications. However, it’s important to consider the specific requirements and operating conditions of the application when selecting the appropriate gear material.

plastic gear

What is the impact of temperature variations on plastic gears?

Temperature variations can have a significant impact on plastic gears. Here’s a detailed explanation of their effects:

1. Thermal Expansion: Plastic gears can experience thermal expansion or contraction with changes in temperature. Different types of plastics have varying coefficients of thermal expansion, meaning they expand or contract at different rates. This can result in dimensional changes, which may affect the gear’s meshing, clearance, and overall performance. It’s important to consider the thermal expansion characteristics of the specific plastic material used in the gear design.

2. Material Softening or Hardening: Plastic materials can exhibit changes in mechanical properties with temperature variations. In general, as temperature increases, plastic materials tend to soften and become more flexible, while at lower temperatures, they can become stiffer and more brittle. These changes can impact the gear’s load-bearing capacity, wear resistance, and overall durability. It’s crucial to select plastic materials that can maintain their mechanical integrity within the expected temperature range of the application.

3. Dimensional Stability: Plastic gears may experience dimensional changes or warping due to temperature fluctuations. Higher temperatures can cause plastic materials to deform, leading to misalignment, increased backlash, or reduced gear accuracy. Conversely, lower temperatures can cause contraction, resulting in tight clearances, increased friction, or gear binding. Proper design considerations, including material selection and gear geometry, can help mitigate the impact of temperature-induced dimensional changes.

4. Lubrication and Wear: Temperature variations can affect the lubrication properties of plastic gears. Higher temperatures can cause lubricants to degrade or become less effective, leading to increased friction, wear, and potential gear failure. Similarly, low temperatures can cause lubricants to thicken or solidify, hindering proper lubrication and increasing wear. Selecting lubricants suitable for the anticipated temperature range and periodic maintenance can help ensure proper lubrication and minimize wear on plastic gears.

5. Cold Flow and Creep: Some plastic materials, especially those with lower glass transition temperatures, may exhibit cold flow or creep at elevated temperatures. Cold flow refers to the gradual deformation or flow of plastic material under constant stress, while creep refers to the time-dependent deformation under a constant load. These phenomena can cause changes in gear geometry, tooth profile, or tooth engagement over time, potentially affecting gear performance and functionality. Understanding the material’s creep and cold flow characteristics is important when selecting plastic gears for applications exposed to temperature variations.

6. Impact on Lubricants and Seals: Temperature variations can also impact the performance of lubricants and seals used in gear systems. Extreme temperatures can cause lubricants to break down, lose viscosity, or leak from the gear assembly. Seals and gaskets may also be affected, leading to compromised gear housing integrity or increased friction. It’s crucial to consider temperature compatibility and select appropriate lubricants and seals that can withstand the anticipated temperature range.

In summary, temperature variations can significantly impact plastic gears by causing thermal expansion, material softening or hardening, dimensional changes, lubrication issues, cold flow or creep, and effects on lubricants and seals. Proper material selection, design considerations, and understanding the anticipated temperature range are essential to ensure the reliable and optimal performance of plastic gears in various applications.

plastic gear

Are there different types of plastic materials used for making gears?

Yes, there are different types of plastic materials used for making gears. Here’s a detailed explanation of some commonly used plastic materials in gear manufacturing:

  • Acetal (Polyoxymethylene – POM): Acetal is a popular choice for gear applications due to its excellent strength, dimensional stability, low friction, and wear resistance. It has good machinability and can be easily molded into gears with precise tooth profiles. Acetal gears offer low noise operation and have good resistance to moisture and chemicals. They are commonly used in automotive, consumer electronics, and industrial applications.
  • Polyamide (Nylon): Polyamide or nylon is another widely used plastic material for gears. It offers good mechanical properties, including high strength, toughness, and impact resistance. Nylon gears have low friction characteristics, good wear resistance, and self-lubricating properties. They are commonly used in applications such as automotive components, power tools, and industrial machinery.
  • Polyethylene (PE): Polyethylene is a versatile plastic material that can be used for gear applications. It offers good chemical resistance, low friction, and excellent electrical insulation properties. While polyethylene gears may have lower strength compared to other plastic materials, they are suitable for low-load and low-speed applications, such as in light-duty machinery, toys, and household appliances.
  • Polypropylene (PP): Polypropylene is a lightweight and cost-effective plastic material that finds applications in gear manufacturing. It offers good chemical resistance, low friction, and low moisture absorption. Polypropylene gears are commonly used in various industries, including automotive, consumer electronics, and household appliances.
  • Polycarbonate (PC): Polycarbonate is a durable and impact-resistant plastic material used for gears that require high strength and toughness. It offers excellent dimensional stability, transparency, and good resistance to heat and chemicals. Polycarbonate gears are commonly used in applications such as automotive components, electrical equipment, and machinery.
  • Polyphenylene Sulfide (PPS): Polyphenylene sulfide is a high-performance plastic material known for its excellent mechanical properties, including high strength, stiffness, and heat resistance. PPS gears offer low friction, good wear resistance, and dimensional stability. They are commonly used in demanding applications such as automotive transmissions, industrial machinery, and aerospace equipment.

These are just a few examples of the plastic materials used for making gears. The choice of plastic material depends on the specific requirements of the gear application, including load capacity, operating conditions, temperature range, chemical exposure, and cost considerations. It’s important to select a plastic material that offers the necessary combination of mechanical properties and performance characteristics for optimal gear performance.

China Hot selling Air Compressor Stainless Steel Gear Set Metal CZPT bevel gear setChina Hot selling Air Compressor Stainless Steel Gear Set Metal CZPT bevel gear set
editor by Dream 2024-04-22