Product Description
High Power Transmission Differential Gear for Gear Box
1. Description
No. | Item | Description |
1 | Name | Straight Gear |
2 | Size | Products can be customized. |
3 | Manufacture Standard | 5-8 Grade ISO1328-1997. |
4 | Material | 45#Steel,20CrMnTi,40Cr,20CrNiMo,20MnCr5,GCR15SiMn,42CrMo,2Cr13stainless steel,Nylon,Bakelite,Copper,Aluminium.etc |
5 | Production Process | The main process is Gear Hobbing, Gear Shaping and Gear Grinding, Selecting production process according to the different products. |
6 | Heat Treatment | Carburizing and quenching ,High-frequency quenching,Nitriding, Hardening and tempering, Selecting heat treatment according to the different materials. |
7 | Testing Equipment | Rockwell hardness tester 500RA, Double mesh instrument HD-200B & 3102,Gear measurement center instrument CNC3906T and other High precision detection equipments |
8 | Certification | GB/T19001-2016/ISO9001:2015 |
9 | Usage | Used in printing machine, cleaning machine, medical equipment, garden machine, construction machine, electric car, valve, forklift, transportation equipment and various gear reducers.etc |
10 | Package | According to customer’s request |
No. | Item | Description |
1 | Name | Differential Gear |
2 | Size | Products can be customized. |
3 | Testing Equipment | Rockwell hardness tester 500RA, Double mesh instrument HD-200B & 3102,Gear measurement center instrument CNC3906T and other High precision detection equipments |
4 | Certification | GB/T19001-2016/ISO9001:2015 |
5 | Usage | Used in printing machine, cleaning machine, medical equipment, garden machine, construction machine, electric car, valve, forklift, transportation equipment and various gear reducers.etc |
6 | Package | According to customer’s request |
2. Photos
3. Order process
a. Customer sends us the drawing or sample, If only sample, our company supply the CAD drawing.
b. Our company supplies the processing technique and quotation.
c. Our company supplies the sample after customer confirmed processing technique and quotation.
d. Customer places the order after confirm the sample.
e. Customer pay 50% deposit
f. Quantity production.
g. Pay the balance after the acceptance and confirmation.
h. Delivery.
Application: | Electric Cars, Machinery, Agricultural Machinery, Industry |
---|---|
Hardness: | Hardened |
Gear Position: | External Gear |
Manufacturing Method: | Assembling |
Toothed Portion Shape: | Involute |
Material: | Carbon Steel, Stainless Steel, Plasitc, POM, Alumi |
Samples: |
US$ 20/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
Can differential gears be used in electric and hybrid vehicles?
Yes, differential gears can be used in both electric and hybrid vehicles. While electric and hybrid vehicles have different powertrain configurations compared to traditional internal combustion engine vehicles, they still require differential gears to distribute power between the wheels and accommodate speed differences. Here’s a detailed explanation:
1. Electric Vehicles (EVs):
In electric vehicles, the power is provided by one or more electric motors. These motors generate torque directly, eliminating the need for a traditional transmission system with a driveshaft. However, EVs still require differential gears to distribute power between the wheels.
2. Single-Speed Transmissions:
Many electric vehicles use single-speed transmissions, also known as direct-drive systems, which do not require multiple gears for speed variation. In these cases, the differential gear is integrated into the electric motor assembly, allowing it to distribute torque between the wheels.
3. Speed and Torque Distribution:
The differential gear in electric vehicles functions similarly to those in conventional vehicles. It accommodates speed differences between the wheels during turns and adjusts torque distribution to ensure optimal traction and control. This helps prevent wheel slip and allows for smooth cornering.
4. Hybrid Vehicles:
Hybrid vehicles combine an internal combustion engine with one or more electric motors. The powertrain configuration varies depending on the type of hybrid system, such as series hybrids, parallel hybrids, or plug-in hybrids. Despite the presence of an internal combustion engine, differential gears are still utilized in hybrid vehicles.
5. Transmissions in Hybrid Vehicles:
Hybrid vehicles often incorporate transmissions to optimize power delivery and efficiency. These transmissions may include differential gears or specific components that perform similar functions to distribute power between the wheels.
6. Regenerative Braking:
Both electric and hybrid vehicles commonly use regenerative braking systems to capture and store energy during deceleration. Differential gears play a role in transmitting torque from the wheels to the electric motor during regenerative braking, allowing the motor to act as a generator and recharge the batteries.
7. Differential Types:
Electric and hybrid vehicles can utilize various differential types, including open differentials, limited-slip differentials, or electronically controlled differentials. The choice of differential depends on factors such as vehicle performance, traction requirements, and driving conditions.
8. Advancements and Innovations:
With the evolving technology in electric and hybrid vehicles, there are also advancements and innovations in differential systems. Manufacturers are exploring new designs, such as integrated motor and differential units, to optimize power distribution and efficiency in these vehicles.
In summary, differential gears are indeed used in electric and hybrid vehicles to distribute power between the wheels, accommodate speed differences, and ensure optimal traction and control. The specific configuration and integration of differential gears may vary depending on the vehicle’s powertrain design and transmission system.
Can differential gears be used in racing and high-performance vehicles?
Yes, differential gears are extensively used in racing and high-performance vehicles. Here’s a detailed explanation of their role and importance in racing and high-performance applications:
- Traction Optimization: Differential gears play a crucial role in optimizing traction, which is vital for racing and high-performance vehicles. They distribute torque between the wheels, allowing power to be transferred to the wheels with the most grip. This helps maximize traction during acceleration, cornering, and exiting corners, enhancing overall performance and vehicle control.
- Cornering Stability: Differential gears contribute to cornering stability in racing and high-performance vehicles. They enable the wheels to rotate at different speeds during turns, allowing the vehicle to negotiate corners more effectively. By allowing the outer wheel to rotate faster than the inner wheel, differential gears help reduce understeer or oversteer tendencies, promoting balanced and predictable handling characteristics.
- Adjustable Performance: Differential gears offer the advantage of adjustability, allowing fine-tuning of performance characteristics to suit specific racing disciplines or driving preferences. By selecting different types of differential gears, such as limited-slip differentials or electronically controlled differentials, drivers and engineers can optimize torque distribution, responsiveness, and traction management for different tracks, weather conditions, or driving styles.
- Improved Acceleration: Differential gears can enhance acceleration in racing and high-performance vehicles. By choosing appropriate gear ratios, drivers can optimize torque delivery to the wheels, maximizing acceleration capabilities. Shorter gear ratios provide more low-end torque, promoting quicker acceleration off the line, while taller gear ratios optimize top speed and high-end performance.
- Enhanced Durability: Racing and high-performance differential gears are often designed and built to withstand the demanding conditions of intense competition. They are constructed using high-quality materials, advanced manufacturing techniques, and specialized coatings to ensure durability and reliability under extreme loads, heat, and stress. This helps maintain consistent performance and minimizes the risk of mechanical failures during races or high-performance driving.
In summary, differential gears are essential components in racing and high-performance vehicles. They optimize traction, contribute to cornering stability, offer adjustability, improve acceleration, and provide enhanced durability. Differential gears are carefully selected and fine-tuned to meet the specific requirements of racing disciplines, high-performance driving, and individual preferences, ultimately enhancing overall performance, control, and competitiveness in these applications.
Can you explain the concept of torque distribution in a differential gear?
Torque distribution is a fundamental concept in a differential gear that refers to the way rotational force is distributed among the wheels of a vehicle. Here’s a detailed explanation:
In a vehicle equipped with a differential gear, torque is transmitted from the engine to the differential, and then further distributed to the wheels. The differential gear ensures that torque is divided between the wheels, allowing them to receive power and propel the vehicle forward.
1. Power Input:
The torque distribution process begins with the power input from the engine. The engine generates rotational force, or torque, which is transmitted through the drivetrain to the differential gear.
2. Differential Assembly:
Within the differential gear, torque is distributed among several components, including the ring gear, pinion gear, side gears, and spider gears. The specific arrangement may differ depending on the type of differential used.
3. Side Gears and Spider Gears:
The side gears are connected to the axle shafts, which extend to the wheels. The spider gears, also known as planetary gears, are positioned between the side gears. When torque is applied to the differential assembly, it is transferred to the side gears through the spider gears.
4. Equal Torque Distribution:
In a straight-line driving scenario, where both wheels have equal traction and are rotating at the same speed, the spider gears rotate freely on their respective shafts. This allows the side gears to rotate at the same speed as the differential case, resulting in equal torque distribution to both wheels. As a result, both wheels receive an equal share of power from the differential.
5. Unequal Torque Distribution:
During turns or when one wheel encounters different traction conditions, the wheels need to rotate at different speeds. In this situation, the spider gears are forced to rotate along with the side gears due to the difference in rotational speeds between the two wheels.
As the spider gears rotate, they allow the side gears to rotate at different speeds, compensating for the variation in wheel speeds. This results in unequal torque distribution, with the outer wheel (on the outside of the turn) receiving more torque and the inner wheel (on the inside of the turn) receiving less torque. The differential gear enables this torque differentiation, ensuring that the wheels can rotate independently while still receiving power from the differential.
6. Optimizing Traction:
The torque distribution in a differential gear plays a crucial role in optimizing traction. Unequal torque distribution allows the wheel with better traction to receive more power, maximizing the vehicle’s ability to maintain forward motion. This is particularly beneficial in situations where one wheel is on a slippery surface or encounters reduced traction conditions.
7. Differential Types:
It’s important to note that different types of differentials can provide varying torque distribution characteristics. For example, open differentials primarily distribute torque equally, while limited-slip differentials and locking differentials offer varying degrees of torque biasing to improve traction in specific conditions.
In summary, torque distribution in a differential gear refers to the division of rotational force among the wheels of a vehicle. The differential gear enables equal torque distribution during straight-line driving and unequal torque distribution during turns or varied traction conditions. By optimizing torque distribution, the differential gear ensures efficient power delivery, traction optimization, and overall performance of the vehicle.
editor by CX 2023-10-20