Product Description
ODM OEM Aluminum/Copper/Iron/Zinc/Stainless Steel Spiral Bevel Gear with Drilling
Gear transmission relies on the thrust between gear teeth to transmit motion and power, also known as meshing transmission. With this gradual meshing, helical gears operate much more smoothly and quietly than spur gears. Therefore, almost all automobile transmissions use helical gears.Since the teeth on the helical gear present a certain angle, the gears will be under a certain amount of stress when they mesh. Equipment using helical gears is equipped with bearings to withstand this pressure.
Product Description
Product name | Bevel Gear |
Materials Available | Stainless Steel, Carbon Steel, Brass, Bronze, Iron, Aluminum Alloy,Copper,Plastic etc |
Heat Treatment | Quenching & Tempering, Carburizing & Quenching, High-frequency Hardening, Carbonitriding…… |
Surface Treatment | Carburizing and Quenching,Tempering ,Tooth suface high quenching Hardening,Tempering |
BORE | Finished bore, Pilot Bore, Special request |
Processing Method | Molding, Shaving, Hobbing, Drilling, Tapping, Reaming, Manual Chamfering, Grinding etc |
Pressure Angle | 20 Degree |
Hardness | 55- 60HRC |
Size | Customer Drawings & ISO standard |
Package | Wooden Case/Container and pallet, or made-to-order |
Certificate | ISO9001:2008 |
Machining Process | Blanking, lathe, semi finishing, heat treatment, decarbonization, rough grinding, semi finishing, fine grinding, finished product inspection |
Applications | Electric machinery, metallurgical machinery, environmental protection machinery, electronic and electrical appliances, road construction machinery, chemical machinery, food machinery, light industrial machinery, mining machinery, transportation machinery, construction machinery, building materials machinery, cement machinery, rubber machinery, water conservancy machinery and petroleum machinery |
Company Profile
Packaging & Shipping
FAQ
Main Markets? | North America, South America, Eastern Europe , West Europe , North Europe, South Europe, Asia |
How to order? | * You send us drawing or sample |
* We carry through project assessment | |
* We give you our design for your confirmation | |
* We make the sample and send it to you after you confirmed our design | |
* You confirm the sample then place an order and pay us 30% deposit | |
* We start producing | |
* When the goods is done, you pay us the balance after you confirmed pictures or tracking numbers. | |
* Trade is done, thank you!! |
If you are interested in our products, please tell us which materials, type, width, length u want.
Application: | Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car, Printing |
---|---|
Hardness: | Hardened Tooth Surface |
Gear Position: | External Gear |
Manufacturing Method: | Cut Gear |
Toothed Portion Shape: | Bevel Wheel |
Material: | Aluminum |
Samples: |
US$ 15/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
Can aluminum gears be used in automotive applications?
Aluminum gears can indeed be used in automotive applications. Here’s a detailed explanation:
1. Weight Reduction: Aluminum is a lightweight material compared to traditional options like steel. By using aluminum gears, automotive manufacturers can reduce the overall weight of the vehicle, which can lead to improved fuel efficiency and performance.
2. Corrosion Resistance: Aluminum gears can offer good corrosion resistance, making them suitable for automotive applications where exposure to moisture, road salt, and other corrosive elements is common. Proper surface treatments or coatings can further enhance their corrosion resistance.
3. Noise and Vibration Dampening: Aluminum gears can help reduce noise and vibration levels in automotive applications. The damping properties of aluminum contribute to a quieter and smoother operation, enhancing the overall driving experience.
4. Design Flexibility: Aluminum is highly formable, allowing the production of gears with complex shapes and intricate designs. This design flexibility can be advantageous in automotive applications where space constraints or specific gear geometries are required.
5. Heat Dissipation: Aluminum has good thermal conductivity, which helps dissipate heat generated during operation. This is especially beneficial in automotive applications where gears may be subjected to high temperatures due to heavy loads or intense driving conditions.
6. Cost-Effectiveness: Aluminum gears can offer a cost-effective solution for automotive manufacturers. The abundance of aluminum as a raw material and its relatively low cost compared to other metals make it an attractive option for mass production.
7. Specific Automotive Applications: Aluminum gears are commonly used in various automotive systems. For example, they can be found in transmissions, differentials, power steering systems, and engine timing systems. The specific performance requirements and operating conditions of these applications are carefully considered during gear design and material selection.
It’s important to note that while aluminum gears have many advantages, they also have limitations. Aluminum is not as strong as some other materials, and in high-torque or heavy-load automotive applications, alternative materials like steel or cast iron may be preferred for their higher strength and load-bearing capabilities.
In summary, aluminum gears can be successfully used in automotive applications, providing benefits such as weight reduction, corrosion resistance, noise and vibration dampening, design flexibility, heat dissipation, and cost-effectiveness. The suitability of aluminum gears depends on the specific requirements, operating conditions, and performance trade-offs of the automotive system in which they are used.
Can aluminum gears be used in renewable energy systems?
Yes, aluminum gears can be used in renewable energy systems. Here’s a detailed explanation:
1. Lightweight and Efficient: Aluminum gears offer the advantage of being lightweight, which is beneficial in renewable energy systems where weight reduction can enhance overall efficiency. For example, in wind turbines, lighter gears reduce the stress on the turbine structure and enable more efficient power generation by reducing the inertia and drag on the rotor.
2. Corrosion Resistance: Aluminum alloys exhibit good corrosion resistance, making them suitable for use in renewable energy systems that are often exposed to outdoor environments. This corrosion resistance ensures the durability and longevity of the gears, even in challenging weather conditions.
3. High Strength-to-Weight Ratio: Despite being lightweight, aluminum alloys can provide adequate strength and durability required for the demanding operational conditions in renewable energy systems. The high strength-to-weight ratio of aluminum gears allows for efficient power transmission while minimizing the weight and size of the gear components.
4. Compatibility with Lubricants: Aluminum gears are compatible with various lubricants commonly used in renewable energy systems. Proper lubrication reduces friction, wear, and heat generation, ensuring smooth and efficient gear operation. The compatibility of aluminum gears with lubricants simplifies maintenance and extends the lifespan of the gear system.
5. Design Flexibility: Aluminum is a highly formable material, allowing for versatile gear design possibilities. Engineers can optimize gear geometries and tooth profiles to improve efficiency, reduce noise, and enhance overall system performance. The design flexibility of aluminum gears enables customization to meet the specific requirements of renewable energy applications.
6. Cost-Effectiveness: Aluminum gears offer cost advantages over other materials such as steel or high-performance alloys. The lower material cost and ease of manufacturing aluminum gears contribute to cost-effective solutions in renewable energy systems, making them an attractive option for gear applications.
7. Reduced Environmental Impact: Aluminum is a highly recyclable material, aligning with the sustainability goals of renewable energy systems. The recyclability of aluminum gears reduces the environmental impact and supports the circular economy by conserving resources and reducing waste.
8. Specific Applications: Aluminum gears find applications in various renewable energy systems, including wind turbines, solar power systems, hydroelectric generators, and tidal energy converters. In each of these applications, aluminum gears contribute to efficient power conversion, improved system performance, and reduced maintenance requirements.
Overall, aluminum gears offer several advantages for use in renewable energy systems, including lightweight design, corrosion resistance, high strength-to-weight ratio, compatibility with lubricants, design flexibility, cost-effectiveness, reduced environmental impact, and suitability for specific applications. These qualities make aluminum gears a viable choice for maximizing the performance and efficiency of renewable energy systems.
Are there different types of aluminum alloys used for making gears?
Yes, there are different types of aluminum alloys used for making gears. Here’s a detailed explanation:
1. Aluminum-Copper Alloys: Aluminum-copper alloys, such as the 2000 series (e.g., 2014, 2024), are commonly used for gears. These alloys offer good strength and excellent fatigue resistance, making them suitable for gears subjected to moderate to high loads. They also exhibit good machinability, which facilitates gear manufacturing processes.
2. Aluminum-Silicon Alloys: Aluminum-silicon alloys, particularly the 4000 series (e.g., 4032), are used for gears requiring high wear resistance and low friction. These alloys have good mechanical properties and can withstand high contact pressures. They are often used in applications where gears operate in harsh conditions or require self-lubrication.
3. Aluminum-Zinc Alloys: Aluminum-zinc alloys, such as the 7000 series (e.g., 7075), are known for their high strength and excellent fatigue resistance. These alloys are commonly used in aerospace applications where lightweight gears with exceptional strength are required. However, they may have lower machinability compared to other aluminum alloys.
4. Aluminum-Magnesium Alloys: Aluminum-magnesium alloys, including the 5000 series (e.g., 5052, 5083), offer a good combination of strength, corrosion resistance, and weldability. These alloys are suitable for gears exposed to marine or corrosive environments. They are also commonly used in general machinery and equipment manufacturing.
5. Aluminum-Zinc-Magnesium Alloys: Aluminum-zinc-magnesium alloys, such as the 7000 series (e.g., 7049), provide an excellent balance of strength, corrosion resistance, and lightweight properties. These alloys are used in high-performance gears, particularly in industries like aerospace and motorsports.
6. Other Alloy Combinations: There are also specialized aluminum alloys tailored for specific gear applications. For example, aluminum-tin alloys are used for gears requiring excellent wear resistance and dimensional stability. These alloys are often employed in automotive applications.
It’s important to note that the selection of the aluminum alloy depends on the specific requirements of the gear application, including load conditions, wear resistance, corrosion resistance, temperature, and manufacturing considerations. Each alloy has its own unique properties and advantages, allowing gear manufacturers to choose the most suitable alloy for their specific needs.
In summary, different types of aluminum alloys, such as aluminum-copper, aluminum-silicon, aluminum-zinc, aluminum-magnesium, aluminum-zinc-magnesium, and specialized alloy combinations, are used for making gears. The choice of alloy depends on factors such as strength requirements, wear resistance, corrosion resistance, and specific application considerations.
editor by CX 2023-09-25