Product Description
Overdrive Gear Assembly of Automobile Gear-box Main Shaft
Why choose us?
1. HangZhou Xihu (West Lake) Dis.hua Chain Group Co., Ltd. Established in 1991, we have 5 subsidiaries in china and have 6 subsidiaries abroad; HangZhou Xihu (West Lake) Dis.hua Gear Co., Ltd is 1 of the subsidiaries of it.
2. We specialized in producing all kinds of standard chains and special chains, cylinder gear, standard & non-standard sprocket and gearbox for middle & light type vehicle and tractor.
3. We have obtained ISO9001, ISO14001, ISO16969, AAA and API certificates.
4. Our partners among world top enterprises, such as JOHNDEERE, NEW HOLLAND, CLAAS, HONDA, KUBOTA, YANMAR, etc.
Technique parameter
Module: 2.5 to 5.0;
Teeth Number: 15 to 50;
Pressure Angle: 17° To 25° ;
O. D: 49 to 250;
L(max): 50
Enterprice Introduction
HangZhou Xihu (West Lake) Dis.hua Gear Co., Ltd. A wholly owned subsidiary of HangZhou Xihu (West Lake) Dis.hua Chain Group Co., Ltd. Is the professional manufacturer of cylinder gear, standard & non standard sprocket and gearbox for middle & light type vehicle and tractor.
The enterprise possesses more than 500 sets of advanced equipments for hobbing, shaping, shaving, grinding and testing, and imported UNIC carburizing automatically lines for heat treatment. Our annual outputs of gears, shafts and sprockets are 4 million pieces and gearboxes are 50, 000 sets. The main products are engine gear, gearbox gear, tractor gear and power transmission sprocket, which widely used in middle & light type trucks, agricultural vehicle, tractors and engineering machinery etc.
Our products “Feiyu Gears” gain “The Famous Brand of ZheJiang Province” and in 2004 we were awarded the “State level Unit of Valuing Contracts and Keeping on Credit” by State Administration of Industry and Commerce.
High quality, best service, reasonable price, we are willing to cooperate with all the customers and develop together.
Application: | Motorcycle, Agricultural Machinery |
---|---|
Manufacturing Method: | Cast Gear |
Toothed Portion Shape: | Spur Gear |
Type: | Circular Gear |
Pressure Angle: | 17° to 25° |
L: | 50 |
Customization: |
Available
| Customized Request |
---|
How do gearboxes contribute to the overall performance and acceleration of a car?
Gearboxes play a vital role in the overall performance and acceleration of a car. Here’s a detailed explanation:
1. Gear Ratio:
The primary function of a gearbox is to provide different gear ratios between the engine and the wheels. Each gear ratio determines the relationship between the rotational speed of the engine (measured in RPM) and the rotational speed of the wheels. By changing gears, the gearbox allows the engine to operate more efficiently across a range of speeds.
2. Torque and Power:
Gearboxes help optimize torque and power delivery from the engine to the wheels. Lower gears provide higher torque multiplication, which means greater force is applied to the wheels, resulting in improved acceleration. Higher gears, on the other hand, allow the engine to operate at lower RPMs, maximizing fuel efficiency during cruising or maintaining high speeds.
3. Acceleration:
A well-designed gearbox enables the car to accelerate quickly. Lower gears, such as first and second gears, provide high torque multiplication, allowing the car to overcome inertia and swiftly gain speed from a standstill. As the car gains momentum, higher gears are used to maintain speed efficiently.
4. Engine Operating Range:
Each engine has an optimal operating range where it produces the most power and torque. Gearboxes ensure that the engine operates within this range by allowing the driver to upshift or downshift based on the speed and load conditions. Keeping the engine within the optimal operating range enhances performance and responsiveness.
5. Fuel Efficiency:
Proper gear selection can significantly impact fuel efficiency. By allowing the engine to operate at lower RPMs in higher gears, the gearbox helps reduce fuel consumption during steady-state cruising. Additionally, modern gearboxes often incorporate technologies such as overdrive gears or continuously variable transmissions (CVT) to further optimize fuel efficiency.
6. Adaptive Gearbox Systems:
Some advanced car models feature adaptive gearbox systems that adjust gearshift patterns based on driving conditions, such as throttle input, road gradient, and vehicle speed. These systems aim to provide optimal performance, acceleration, and fuel efficiency by continuously analyzing various parameters and selecting the most appropriate gear ratio.
7. Manual vs. Automatic Gearboxes:
Both manual and automatic gearboxes contribute to the overall performance and acceleration of a car. Manual gearboxes offer more direct control, allowing skilled drivers to optimize gear selection for maximum performance. Automatic gearboxes, on the other hand, use complex algorithms and sensors to shift gears automatically, providing smooth acceleration and convenience.
In summary, gearboxes have a significant impact on the overall performance and acceleration of a car. By providing different gear ratios, optimizing torque delivery, and allowing the engine to operate within its optimal range, gearboxes enhance acceleration, fuel efficiency, and overall driving experience.
How does a dual-clutch transmission (DCT) enhance the driving experience?
A dual-clutch transmission (DCT) enhances the driving experience in several ways. Here’s a detailed explanation:
1. Quick and Smooth Gear Shifts:
A DCT utilizes two separate clutches, one for odd-numbered gears and another for even-numbered gears. This dual-clutch setup allows for quick and seamless gear shifts without interrupting power delivery. While one clutch is engaged with the current gear, the other clutch pre-selects the next gear, resulting in near-instantaneous shifts. This quick and smooth shifting enhances acceleration and provides a more engaging driving experience.
2. Continuous Power Delivery:
Since a DCT can shift gears without the need for a torque converter (as in automatic transmissions), there is minimal power loss during gear changes. The power transfer from the engine to the wheels remains uninterrupted, resulting in improved performance and responsiveness. This continuous power delivery contributes to a more dynamic driving experience.
3. Enhanced Fuel Efficiency:
DCTs are designed to optimize fuel efficiency by reducing power losses and maximizing engine performance. The precise and efficient gear changes of a DCT help keep the engine operating in its optimal power band, resulting in improved fuel economy compared to traditional automatic transmissions.
4. Manual Control and Sporty Driving:
Many DCT-equipped vehicles offer manual control modes, such as paddle shifters or a manual shift gate. These modes allow the driver to manually select gears, providing a more involved and sporty driving experience. The ability to control gear changes enhances driver engagement and allows for greater control over the vehicle’s performance.
5. Versatility and Adaptability:
DCTs can adapt to different driving conditions and driver preferences. They often feature multiple driving modes, such as “Normal,” “Sport,” or “Eco,” which adjust shift points, throttle response, and other parameters to suit various driving styles. This versatility allows drivers to tailor the transmission’s behavior to their preferences, whether they prioritize performance, fuel efficiency, or comfort.
6. Suitable for Performance Vehicles:
DCTs are commonly used in high-performance and sporty vehicles due to their ability to provide lightning-fast gear changes and precise control. The rapid and seamless shifts of a DCT contribute to improved acceleration, faster lap times, and enhanced overall performance.
In summary, a dual-clutch transmission (DCT) enhances the driving experience through quick and smooth gear shifts, continuous power delivery, improved fuel efficiency, manual control options, adaptability to different driving conditions, and suitability for performance-oriented vehicles. These features contribute to a more engaging, responsive, and enjoyable driving experience for enthusiasts and drivers seeking a balance between performance and everyday usability.
How does an automatic transmission differ from a manual transmission?
An automatic transmission and a manual transmission differ in several ways. Here’s a detailed explanation:
1. Gear Shifting:
In a manual transmission, the driver manually operates the clutch pedal and gearshift lever to engage and disengage gears and select the appropriate gear ratio. This requires coordination between the clutch, accelerator, and gearshift movements.
On the other hand, an automatic transmission shifts gears automatically without driver intervention. It uses a torque converter or a dual-clutch system to smoothly transition between gears based on factors such as vehicle speed, engine load, and throttle input. The driver only needs to select the driving mode (e.g., “Drive,” “Sport,” or “Economy”) and control the accelerator and brake pedals.
2. Clutch Operation:
In a manual transmission, the clutch pedal is used to engage or disengage the engine from the transmission. When changing gears, the driver depresses the clutch pedal, which temporarily disconnects the engine’s power from the transmission. This allows for smooth gear engagement and disengagement.
In an automatic transmission, there is no clutch pedal. Instead, it uses a torque converter or a dual-clutch system to transmit power from the engine to the transmission. These systems automatically manage the power transfer and eliminate the need for manual clutch operation.
3. Driver Involvement:
A manual transmission requires more driver involvement and skill. The driver must actively engage the clutch pedal, shift gears, and match engine RPMs to achieve smooth gear changes. This level of control can be preferred by enthusiasts who enjoy the engagement and control over the vehicle’s performance.
An automatic transmission offers a more relaxed driving experience as it shifts gears automatically. The driver can focus on steering, acceleration, and braking without the need to manually operate the clutch or shift gears. This convenience is especially beneficial in heavy traffic or during long-distance drives.
4. Fuel Efficiency:
In the past, manual transmissions were generally more fuel-efficient than automatic transmissions. This was because the driver had more control over gear selection and could optimize engine RPMs for better fuel economy. However, advancements in automatic transmission technology, such as the introduction of continuously variable transmissions (CVTs) and improved gearshift algorithms, have narrowed the fuel efficiency gap between manual and automatic transmissions.
Modern automatic transmissions often incorporate features like multiple gears, adaptive shift patterns, and torque converter lock-up for improved fuel efficiency. Some automatic transmissions even offer manual shift modes or paddle shifters, allowing the driver to manually select gears when desired.
5. Market Availability:
Manual transmissions are less common in certain regions, such as North America, where automatic transmissions dominate the market. Automatic transmissions are widely available and come as standard or optional equipment in most vehicles. Manual transmissions are more prevalent in certain markets, such as Europe, where they are preferred by a significant portion of drivers.
Overall, the main differences between automatic and manual transmissions lie in the gear-shifting mechanism, clutch operation, driver involvement, fuel efficiency, and market availability. The choice between the two depends on individual preferences, driving conditions, and the desired level of control and convenience.
“`
editor by CX 2023-09-07