China manufacturer Advance 06 Series Marine Main Propulsion Reduction Gearbox gear cycle

Product Description

Advance 06 series marine main propulsion reduction gearbox,; with Advance gearbox list as:;

Model Max Power Input
(hp/rpm);
Speed Rang
(rpm);
Reduction Ration Weight Suitable Engines
06 12.;5/2100 1000-2100 2.;52/3.;05/3.;50 58kg Yanmar TS130/TS155 Hatz E786
16A 33/2000 1000-2000 2.;07/2.;48/2.;95/3.;35/3.;83 84kg MWM D226-2,; Hatz 3M31
MA100A 37/3000 1500-3000 1.;6/2/2.;55/3.;11/3.;59/3.;88 75 Isuzu UM02AB1,; CHINAMFG ME125
MA125 82/3000 1500-3000 2.;03/2.;46/3.;04/3.;57/4.;05
/4.;39/4.;7
115 Isuzu UM02AB1,; CHINAMFG ME125
MA142 102/2500 1500-3000 1.;97/2.;52/3.;03/3.;54/3.;95/4.;5 140 Cummins 4BTA3.;9-M MWM D226-4
40A 82/2000 750-2000 2.;07/2.;96/3.;44 225 Yanmar ME400L,; Baudouin 4D
MB170 132/2500 1000-2500 1.;97/2.;52/3.;04/3.;96/4.;5/5.;06
/5.;47/5.;88
240 MWM D226-6,; CHINAMFG ME400L
HC65 163/2500 1000-2500 1.;53/2.;03/2.;5/2.;96 130 6BT5.;9-M
120B   750-1800 2.;03/2.;81/3.;73 400  
120C 340/2500 1000-2500 1.;48/1.;94/2.;45/2.;96/3.;35 225 Cummins NT855-M240,; CAT 3208TA
MV100 408/3000 1500-3000 1.;23/1.;62/2.;07/2.;52/2.;87 220 NT855-M240,; MWM D234 V8
135A 272/2000 1000-2000 2.;03/2.;59/3.;04/3.;62/4.;11/4.;65
/5.;06/5.;47/5.;81
470 NT855-M240,; CAT 3406
HCQ138 390/2600 1000-2600 1.;03/1.;5/2.;03/2.;48/2.;95 200 NT855-M240,; CAT 3406
HC138 375/2500 1000-2500 2/2.;52/3/3.;57/4.;05/4.;45 360 6135Ca,; NT855-M240
HCD138 375/2500 1000-2500 5.;05/5.;63/6.;06/6.;47 415 6135Ca,; NT855-M240
HCA138 390/2600 1000-2600 1.;095/1.;28/1.;5/2.;03/2.;52/3 200 NT855-M240,; MWM D234 V8
MB242 350/2500 1000-2500 3.;04/3.;52/3.;95/4.;53/5.;12
/5.;56/5.;88
385 NT855-M240,; CAT 3406
HC200 440/2200 1000-2200 1.;48/2/2.;28 280 NT855-M240,; CAT 3406TA
HC201 500/2500 1000-2500 2.;46/2.;955/3.;526 350 6135ZLCa,; CHINAMFG NTA855-M400
MB270A 500/2500 1000-2500 4.;05/4.;53/5.;12/5.;5/5.;95/6.;39/6.;82 675 NTA855-M400,; CAT 3406TA
HCQ300 782/2300 1000-2300 1.;05/1.;46/2.;05/2.;38 350 KTA19-M600,; 3412T,; TBD234 V12
300 805/2300 1000-2300 2.;04/2.;54/3/3.;53/4.;1/4.;61/4.;94
/5.;44
740 KTA19-M600,; TBD234 V12
D300 805/2300 1000-2300 4/4.;48/5.;05/5.;52/5.;9/6.;56/7.;06
/7.;63
940 KTA19-M600,; TBD234 V12
T300 759/2300 1000-2300 4.;95/6.;03/6.;65/7.;04/7.;54/8.;02
/8.;47
1120 KTA19-M600,; 3412T,; TBD234 V12
T300/1 611/2300 1000-2300 8.;94/9.;45 1120 KTA19-M600,; 3412T
HCA300 850/2500 1000-2500 1.;5/2/2.;57/2.;95 370 KTA19-M600,; 3412T,; TBD234 V12
M300 850/2300 1000-2300 1.;45/2/2.;52/3.;05/3.;45/3.;94 700 KTA19-M600,; TBD234 V12
MD300 850/2300 1000-2300 3.;96/4.;48/4.;96/5.;52/5.;9 940 KTA19-M600,; TBD234 V12
HCQ400 810/1800 1000-2300 1.;5/2.;04/2.;5/3/3.;42/3.;77/4.;06
/4.;61/4.;94
1100 KT38-M800,; TBD604BL6,; 3412TA
HC400 810/1800 1000-2300 1.;5/2.;04/2.;5/3/3.;42/3.;77/4.;06
/4.;61/4.;94
820 3412TA,; TBD604BL6
HCD400A 810/1800 1000-1800 3.;96/4.;33/4.;43/4.;476/4.;7/5/5.;53
/5.;7/5.;89
1100 KT38-M800,; TBD604BL6
HCT400A 945/2100 1000-2100 6.;09/6.;49/6.;93/7.;42/7.;95/8.;4
/9/9.;47
1450 KT38-M800,; 6BD604BL6
HCT400A/1 945/2100 1000-2100 8.;15/8.;69/9.;27/10.;6/11.;46/12 1500 KTA38-M800,; 3412TA,; TBD604BL6
HCQ501 1265/2300 1000-2300 1.;03/1.;46/2/2.;45 560 KTA38-M940,; 3508B,; TBD234 V16
HCQ502 1265/2300 1000-2300 2.;95 700 KTA38-M940,; 3508TA,; TBD234 V16
HC600A 1365/2100 1000-2100 2/2.;48/3/3.;58/3.;89 1300 KTA38-M1045,; 3508B,; TBD604B V8
HCD600A 1365/2100 1000-2100 4.;18/4.;43/4.;7/5/5.;44/5.;71 1550 KTA38-M1045,; 3508B,; TBD604B V8
HCT600A 1260/2100 1000-2100 6.;06/6.;49/6.;97/7.;51/8.;04/8.;66/9.;35 1600 KTA38-M940,; 3508TA,; TBD234 V16
HCT600A/1 1260/2100 1000-2100 7.;69/8.;23/8.;82/9.;47/10.;1/10.;8
/11.;65/12.;57/14.;44
1700 KTA38-M940,; TBD234 V16
HCD800 1530/1800 1000-1800 3.;429/3.;96/4.;391/4.;905/5.;474/5.;889 1900 6190Z1CZ,; CW6200,; KTA38-M1
HCT800 1530/1800 800-1800 4.;95/5.;57/5.;68/5.;93/6.;43/6.;86
/7.;33/7.;84
2000 KTA38-M
HCT800-1   800-1800 6.;91/7.;28/7.;69/8.;12/8.;6/9.;12
/9.;68/10.;3/10.;98/11.;76/12.;43
/13.;17/13.;97/14.;85/15.;82/16.;58
3200  
HC900 1440/1600 600-1600 1.;46/2.;04/2.;47/3/3.;6/4.;08/4.;63/4.;95 1600 12V190DC,; M200
HCT1100 1841/1600 700-1600 5.;6/5.;98/6.;39/6.;85/7.;35/7.;9 3000 CW6200
HC1200   600-1900 2.;03/2.;5/2.;96/3.;55/3.;79/4.;05/4.;2/4.;47 2000  
HC1250 1654/1800 400-1800 2.;03/2.;48/3.;04/3.;48/3.;96 2200 CW8200ZC,; 6210ZL,; Z12V190
HC701 1286/2400 1200-2400 1.;93/2.;58/2.;9/3.;26/3.;91/4.;6/5.;17
/6.;18/7/7.;47
2000 KTA38-M2

manufactured by 1 of the biggest gearbox manufacturer in China,; with technologies
introduced from Bosch,; Twindisc,; Eaton,; etc.;
Besides gearbox,; we mainly sell diesel/petrol engines and related spare parts,; with brands
including:; Cummins,; Deutz,; CAT,;Isuzu,; VM,; Toyota,; Mitsubishi,; Suzuki,; Yuchai,;
Weichai,; Changchai,; etc,; for various applications,; such as automobile,; bus,; coach,; van,; truck,;
bulldozer,; forklift,; excavator,; road roller,; wheel loader,; hoister,; generator,; water pump,;
fire pump,; marine main propulsion,; marine auxiliary,; etc.;

Application: Marine, Marine
Hardness: Hardened
Type: Circular Gear
Typical Engines: Yanmar Ts130, Ts155, Hatz E786
Material: Stainless Steel
Overall Dimension: 350*316*482mm

plastic gear

How do plastic gears contribute to reducing noise and vibration?

Plastic gears contribute to reducing noise and vibration in various applications. Here’s a detailed explanation of how they achieve this:

Plastic gears possess inherent properties that help dampen noise and vibration during operation. These properties, combined with specific design considerations, contribute to the reduction of noise and vibration in the following ways:

  • Damping Characteristics: Plastic materials have inherent damping characteristics, meaning they have the ability to absorb and dissipate vibrations. When compared to metal gears, which are stiffer and transmit vibrations more efficiently, plastic gears can effectively reduce the transmission of vibrations through their damping properties.
  • Reduced Resonance: Plastic gears have the ability to attenuate resonant frequencies, which are frequencies at which vibrations can be amplified. By properly designing the tooth profile, gear geometry, and material selection, plastic gears can shift or dampen these resonant frequencies, preventing excessive vibration and noise generation.
  • Tighter Gear Mesh Tolerances: Plastic gears can be manufactured with tighter gear mesh tolerances, which refers to the amount of clearance or backlash between mating gear teeth. Tighter tolerances lead to better gear engagement and reduced impact or vibration during gear meshing, resulting in quieter operation.
  • Surface Finishes: The surface finish of plastic gears can be optimized to reduce friction and noise. Smoother gear surfaces reduce the potential for gear tooth noise and improve the overall meshing characteristics between gears. Proper lubrication or the use of self-lubricating plastic materials can further enhance the noise-reducing properties.
  • Flexibility in Tooth Design: Plastic gears offer greater flexibility in tooth design compared to metal gears. Engineers can optimize the tooth profile and modify the gear geometry to minimize noise and vibration. For example, incorporating modifications such as profile shifting, tip relief, or helical teeth can help reduce gear noise by promoting smoother and more gradual tooth engagements.

By leveraging these characteristics and design considerations, plastic gears can effectively reduce noise and vibration levels in various applications. This makes them particularly suitable for use in noise-sensitive environments, such as consumer electronics, automotive components, or office equipment.

It’s important to note that while plastic gears can contribute to noise and vibration reduction, the specific noise performance also depends on other factors within the overall system, such as gear arrangement, supporting structures, and the presence of other noise sources. Therefore, a holistic approach to noise reduction should be considered when incorporating plastic gears into a design.

plastic gear

What is the impact of temperature variations on plastic gears?

Temperature variations can have a significant impact on plastic gears. Here’s a detailed explanation of their effects:

1. Thermal Expansion: Plastic gears can experience thermal expansion or contraction with changes in temperature. Different types of plastics have varying coefficients of thermal expansion, meaning they expand or contract at different rates. This can result in dimensional changes, which may affect the gear’s meshing, clearance, and overall performance. It’s important to consider the thermal expansion characteristics of the specific plastic material used in the gear design.

2. Material Softening or Hardening: Plastic materials can exhibit changes in mechanical properties with temperature variations. In general, as temperature increases, plastic materials tend to soften and become more flexible, while at lower temperatures, they can become stiffer and more brittle. These changes can impact the gear’s load-bearing capacity, wear resistance, and overall durability. It’s crucial to select plastic materials that can maintain their mechanical integrity within the expected temperature range of the application.

3. Dimensional Stability: Plastic gears may experience dimensional changes or warping due to temperature fluctuations. Higher temperatures can cause plastic materials to deform, leading to misalignment, increased backlash, or reduced gear accuracy. Conversely, lower temperatures can cause contraction, resulting in tight clearances, increased friction, or gear binding. Proper design considerations, including material selection and gear geometry, can help mitigate the impact of temperature-induced dimensional changes.

4. Lubrication and Wear: Temperature variations can affect the lubrication properties of plastic gears. Higher temperatures can cause lubricants to degrade or become less effective, leading to increased friction, wear, and potential gear failure. Similarly, low temperatures can cause lubricants to thicken or solidify, hindering proper lubrication and increasing wear. Selecting lubricants suitable for the anticipated temperature range and periodic maintenance can help ensure proper lubrication and minimize wear on plastic gears.

5. Cold Flow and Creep: Some plastic materials, especially those with lower glass transition temperatures, may exhibit cold flow or creep at elevated temperatures. Cold flow refers to the gradual deformation or flow of plastic material under constant stress, while creep refers to the time-dependent deformation under a constant load. These phenomena can cause changes in gear geometry, tooth profile, or tooth engagement over time, potentially affecting gear performance and functionality. Understanding the material’s creep and cold flow characteristics is important when selecting plastic gears for applications exposed to temperature variations.

6. Impact on Lubricants and Seals: Temperature variations can also impact the performance of lubricants and seals used in gear systems. Extreme temperatures can cause lubricants to break down, lose viscosity, or leak from the gear assembly. Seals and gaskets may also be affected, leading to compromised gear housing integrity or increased friction. It’s crucial to consider temperature compatibility and select appropriate lubricants and seals that can withstand the anticipated temperature range.

In summary, temperature variations can significantly impact plastic gears by causing thermal expansion, material softening or hardening, dimensional changes, lubrication issues, cold flow or creep, and effects on lubricants and seals. Proper material selection, design considerations, and understanding the anticipated temperature range are essential to ensure the reliable and optimal performance of plastic gears in various applications.

plastic gear

What industries commonly use plastic gears?

Plastic gears find applications in various industries due to their unique properties and advantages. Here’s a detailed explanation of the industries that commonly use plastic gears:

  • Automotive: Plastic gears are used in automotive applications such as power windows, seat adjusters, HVAC systems, windshield wipers, and various motor-driven mechanisms. Their lightweight nature, noise reduction capabilities, and corrosion resistance make them suitable for these applications.
  • Consumer Electronics: Plastic gears are used in consumer electronics devices like printers, scanners, cameras, and audio equipment. Their lightweight construction, low noise generation, and design flexibility make them ideal for compact and noise-sensitive applications.
  • Medical: Plastic gears are utilized in medical devices and equipment such as pumps, lab instruments, diagnostic devices, and surgical equipment. Their corrosion resistance, lubricity, and ability to be sterilized make them suitable for medical environments.
  • Office Equipment: Plastic gears are commonly found in office equipment like printers, photocopiers, scanners, and shredders. Their low noise operation, lightweight construction, and cost-effectiveness make them popular choices in these applications.
  • Industrial Machinery: Plastic gears are used in various industrial machinery applications, including packaging equipment, conveyor systems, material handling equipment, and small gearboxes. Their self-lubricating properties, corrosion resistance, and noise reduction capabilities make them suitable for these industrial environments.
  • Toys and Games: Plastic gears are extensively used in toys, hobbyist models, and games. Their lightweight nature, cost-effectiveness, and ease of customization allow for the creation of intricate moving parts in these recreational products.
  • Aerospace: Plastic gears are used in certain aerospace applications, particularly in non-critical systems such as cabin equipment, small actuators, and control mechanisms. Their lightweight construction and noise reduction characteristics are advantageous in aerospace applications.
  • Telecommunications: Plastic gears find applications in telecommunications equipment such as routers, switches, and communication devices. Their lightweight design, noise reduction properties, and cost-effectiveness make them suitable for these applications.

These are just a few examples of the industries that commonly use plastic gears. The versatility, cost-effectiveness, design flexibility, and specific performance characteristics of plastic gears make them valuable components in numerous applications across various sectors.

China manufacturer Advance 06 Series Marine Main Propulsion Reduction Gearbox gear cycleChina manufacturer Advance 06 Series Marine Main Propulsion Reduction Gearbox gear cycle
editor by CX 2023-10-20