China manufacturer CNC Machining Aluminium Gear Unit Nmrv025-090 Worm Gear Box spurs gear

Product Description

 

Product Description

Main Materials:
1)housing:aluminium alloy ADC12(size 571-090); die cast iron HT200(size 110-150);
2)Worm:20Cr, ZI Involute profile; carbonize&quencher heat treatment make gear surface hardness up to 56-62 HRC; After precision grinding, carburization layer’s thickness between 0.3-0.5mm.
3)Worm Wheel:wearable stannum alloy CuSn10-1

Detailed Photos

Combination Options:
Input:with input shaft, With square flange,With IEC standard input flange
Output:with torque arm, output flange, single output shaft, double output shaft, plastic cover
Worm reducers are available with diffferent combinations: NMRV+NMRV, NMRV+NRV, NMRV+PC, NMRV+UDL, NMRV+MOTORS

Exploded View:

Product Parameters

 
Old Model     
  New Model     Ratio     Center Distance  Power Input Dia.  Output Dia.    Output Torque Weight
RV571     7.5~100   25mm   0.06KW~0.12KW  Φ9 Φ11 21N.m  0.7kgs
RV030 RW030 7.5~100 30mm   0.06KW~0.25KW Φ9(Φ11) Φ14 45N.m  1.2kgs
RV040 RW040 7.5~100 40mm   0.09KW~0.55KW Φ9(Φ11,Φ14) Φ18(Φ19) 84N.m  2.3kgs
RV050 RW050 7.5~100 50mm   0.12KW~1.5KW Φ11(Φ14,Φ19) Φ25(Φ24) 160N.m  3.5kgs
RV063 RW063 7.5~100 63mm   0.18KW~2.2KW Φ14(Φ19,Φ24) Φ25(Φ28) 230N.m  6.2kgs
RV075 RW075 7.5~100 75mm   0.25KW~4.0KW Φ14(Φ19,Φ24,Φ28)  Φ28(Φ35) 410N.m  9.0kgs
RV090 RW090 7.5~100 90mm   0.37KW~4.0KW Φ19(Φ24,Φ28) Φ35(Φ38) 725N.m  13.0kgs
RV110 RW110 7.5~100 110mm   0.55KW~7.5KW Φ19(Φ24,Φ28,Φ38)   Φ42 1050N.m  35.0kgs
RV130 RW130 7.5~100 130mm   0.75KW~7.5KW Φ24(Φ28,Φ38) Φ45 1550N.m  48.0kgs
RV150 RW150 7.5~100 150mm     2.2KW~15KW Φ28(Φ38,Φ42) Φ50   84.0kgs

GMRV Outline Dimension:

GMRV A B C C1 D(H8) E(h8) F G G1 H H1 I M N O P Q R S T BL β b t V  
030 80 97 54 44 14 55 32 56 63 65 29 55 40 57 30 75 44 6.5 21 5.5 M6*10(n=4) 5 16.3 27
040 100 121.5 70 60 18(19) 60 43 71 78 75 36.5 70 50 71.5 40 87 55 6.5 26 6.5 M6*10(n=4) 45° 6 20.8(21.8) 35
050 120 144 80 70 25(24) 70 49 85 92 85 43.5 80 60 84 50 100 64 8.5 30 7 M8*12(n=4) 45° 8 28.3(27.3) 40
063 144 174 100 85 25(28) 80 67 103 112 95 53 95 72 102 63 110 80 8.5 36 8 M8*12(n=8) 45° 8 28.3(31.3) 50
075 172 205 120 90 28(35) 95 72 112 120 115 57 112.5 86 119 75 140 93 11 40 10 M8*14(n=8) 45° 8(10) 31.3(38.3) 60
090 206 238 140 100 35(38) 110 74 130 140 130 67 129.5 103 135 90 160 102 13 45 11 M10*16(n=8) 45° 10 38.3(41.3) 70
110 255 295 170 115 42 130 144 155 165 74 160 127.5 167.5 110 200 125 14 50 14 M10*18(n=8) 45° 12 45.3 85
130 293 335 200 120 45 180 155 170 215 81 179 146.5 187.5 130 250 140 16 60 15 M12*20(n=8) 45° 14 48.8 100
150 340 400 240 145 50 180 185 200 215 96 210 170 230 150 250 180 18 72.5 18 M12*22(n=8) 45° 14 53.8  120  

Company Profile

About CHINAMFG Transmission:
We are a professional reducer manufacturer located in HangZhou, ZHangZhoug province.
Our leading products is  full range of RV571-150 worm reducers , also supplied GKM hypoid helical gearbox, GRC inline helical gearbox, PC units, UDL Variators and AC Motors, G3 helical gear motor.
Products are widely used for applications such as: foodstuffs, ceramics, packing, chemicals, pharmacy, plastics, paper-making, construction machinery, metallurgic mine, environmental protection engineering, and all kinds of automatic lines, and assembly lines.
With fast delivery, superior after-sales service, advanced producing facility, our products sell well  both at home and abroad. We have exported our reducers to Southeast Asia, Eastern Europe and Middle East and so on.Our aim is to develop and innovate on basis of high quality, and create a good reputation for reducers.

 Packing information:Plastic Bags+Cartons+Wooden Cases , or on request
We participate Germany Hannver Exhibition-ZheJiang PTC Fair-Turkey Win Eurasia 

Logistics

After Sales Service

1.Maintenance Time and Warranty:Within 1 year after receiving goods.
2.Other ServiceIncluding modeling selection guide, installation guide, and problem resolution guide, etc.

FAQ

1.Q:Can you make as per customer drawing?
   A: Yes, we offer customized service for customers accordingly. We can use customer’s nameplate for gearboxes.
2.Q:What is your terms of payment ?
   A: 30% deposit before production,balance T/T before delivery.
3.Q:Are you a trading company or manufacturer?
   A:We are a manufacurer with advanced equipment and experienced workers.
4.Q:What’s your production capacity?
   A:8000-9000 PCS/MONTH
5.Q:Free sample is available or not?
   A:Yes, we can supply free sample if customer agree to pay for the courier cost
6.Q:Do you have any certificate?
   A:Yes, we have CE certificate and SGS certificate report.

Contact information:
Ms Lingel Pan
For any questions just feel free ton contact me. Many thanks for your kind attention to our company!

Application: Motor, Machinery, Marine, Agricultural Machinery, Industry
Function: Distribution Power, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction
Layout: Right Angle
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Double-Step
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

aluminum gear

How do aluminum gears handle lubrication and wear?

Aluminum gears handle lubrication and wear in specific ways. Here’s a detailed explanation:

1. Lubrication: Proper lubrication is crucial for the performance and longevity of aluminum gears. Lubricants reduce friction between gear surfaces, prevent metal-to-metal contact, and dissipate heat. Aluminum gears typically require lubricants with good film-forming properties and adequate load-carrying capacity. The lubricant forms a thin film between the gear teeth, reducing wear and providing protection against surface damage. Lubrication also helps minimize noise and vibration in the gear system.

2. Lubricant Selection: When selecting a lubricant for aluminum gears, several factors need to be considered. These include the operating conditions (temperature, speed, and load), compatibility with the gear material and other components, desired viscosity, and the lubricant’s ability to resist oxidation and maintain its properties over time. It’s important to consult lubricant manufacturers or industry standards to ensure the right lubricant is chosen for the specific application.

3. Lubrication Methods: Aluminum gears can be lubricated using various methods. Common approaches include splash lubrication, oil bath lubrication, and forced lubrication systems. The lubrication method depends on the gear design, operating conditions, and lubrication requirements of the specific application. Proper lubrication system design and maintenance are essential to ensure effective lubrication throughout the gear’s service life.

4. Wear: Wear is an inevitable phenomenon in gear systems, including those with aluminum gears. Wear occurs due to the cyclic contact and sliding between gear teeth, which leads to material removal and surface degradation. However, aluminum gears can exhibit good wear resistance, especially when properly lubricated and designed. The lubricant forms a protective film that minimizes direct metal-to-metal contact, reducing wear. Additionally, aluminum alloys often have self-lubricating properties, resulting from the formation of oxide layers on the gear surface.

5. Surface Treatments: Surface treatments can improve the wear resistance of aluminum gears. Processes such as hard coating, anodizing, or surface modification techniques can enhance the surface hardness, reduce friction, and provide additional protection against wear. These treatments can extend the gear’s lifespan and enhance its performance in demanding applications.

6. Inspections and Maintenance: Regular inspections and maintenance are vital to monitor the condition of aluminum gears and ensure proper lubrication. Visual inspections, oil analysis, and monitoring gear performance can help detect signs of wear, lubricant degradation, or inadequate lubrication. Timely maintenance actions such as lubricant replenishment, filter replacement, and gear reconditioning can prevent excessive wear and prolong the gear’s service life.

It’s important to note that the specific lubrication and wear characteristics of aluminum gears may vary depending on factors such as the alloy used, gear geometry, operating conditions, and maintenance practices. Consulting with gear manufacturers, lubrication experts, or industry professionals can provide further insights into optimizing lubrication and mitigating wear in aluminum gear applications.

In summary, aluminum gears handle lubrication and wear through proper lubrication practices, careful selection of lubricants, appropriate lubrication methods, wear-resistant surface treatments, and regular inspections and maintenance. These measures ensure effective lubrication, reduce wear, and extend the lifespan of aluminum gears in various applications.

aluminum gear

Are there specific design considerations for using aluminum gears?

Using aluminum gears requires specific design considerations. Here’s a detailed explanation:

1. Material Selection: Aluminum alloys have different mechanical properties and characteristics. When designing aluminum gears, it’s important to select an alloy that meets the specific requirements of the application. Factors to consider include the desired strength, hardness, wear resistance, corrosion resistance, and thermal conductivity of the gear. The selected alloy should be suitable for the operating conditions and loads expected in the application.

2. Strength and Load Capacity: Aluminum is generally not as strong as some other materials like steel or cast iron. Therefore, when designing aluminum gears, it’s important to carefully consider the anticipated loads and stresses they will experience. Structural analysis, such as finite element analysis (FEA), can help determine the gear’s load capacity and structural integrity. Reinforcement techniques or incorporating additional support structures may be necessary in high-load applications.

3. Heat Dissipation: Aluminum has good thermal conductivity, which allows it to dissipate heat effectively. However, in applications where gears generate significant heat, thermal management becomes critical. Designing gear systems with proper cooling mechanisms, such as fins, heat sinks, or forced air circulation, can help prevent overheating and maintain optimal operating temperatures for the aluminum gears.

4. Gear Geometry: The design of aluminum gears should consider factors such as tooth profile, module, pressure angle, and tooth thickness. The gear geometry affects the gear’s load-carrying capacity, efficiency, noise level, and overall performance. It’s important to ensure proper tooth engagement, minimize stress concentrations, and optimize gear meshing characteristics to achieve the desired functionality and durability.

5. Lubrication: Lubrication is essential for aluminum gears to minimize friction, wear, and heat generation. Design considerations should include providing adequate space for lubricant reservoirs, channels, or oil passages to ensure proper lubricant distribution across the gear surfaces. The gear design should also facilitate efficient lubricant retention and minimize the risk of lubricant leakage or contamination.

6. Noise and Vibration: Aluminum gears can contribute to noise reduction due to their damping properties. However, the gear design should aim to further minimize noise and vibration levels. Considerations include gear tooth profile optimization, gear tooth surface finish, backlash control, and the use of noise-dampening features such as gear coatings or sound-absorbing materials.

7. Manufacturability: Designing aluminum gears should take into account the manufacturability aspects. Aluminum is a highly formable material, allowing for complex gear shapes and intricate designs. However, considerations such as casting or machining processes, tooling requirements, dimensional tolerances, and surface finish specifications should be addressed to ensure consistent and cost-effective production.

8. Compatibility with Other Components: Aluminum gears are often used in conjunction with other components within a larger system. It’s important to ensure compatibility between aluminum gears and other materials or components they interact with. Factors such as galvanic corrosion, differential thermal expansion, or material compatibility should be considered to prevent premature failure or performance issues.

By addressing these specific design considerations, aluminum gears can be effectively utilized in various applications, taking advantage of their unique properties and benefits.

aluminum gear

What are the advantages of using aluminum gears in machinery?

Using aluminum gears in machinery offers several advantages. Here’s a detailed explanation:

1. Lightweight: One of the primary advantages of aluminum gears is their lightweight nature. Aluminum is significantly lighter than other commonly used gear materials such as steel or cast iron. This lightweight property reduces the overall weight of the machinery, resulting in benefits such as improved energy efficiency, reduced inertia, and easier handling and installation.

2. Corrosion Resistance: Aluminum gears can exhibit good corrosion resistance, especially when they are made from corrosion-resistant aluminum alloys. This makes them suitable for machinery operating in environments where exposure to moisture, chemicals, or other corrosive substances is a concern. The corrosion resistance of aluminum gears helps prolong their lifespan and ensures reliable performance in such conditions.

3. Low Noise: Aluminum gears have inherent damping properties that help reduce noise levels in machinery. The natural damping characteristics of aluminum help absorb vibrations and minimize noise generation during gear operation. This makes aluminum gears particularly advantageous in applications where noise reduction is important, such as in precision machinery or equipment used in noise-sensitive environments.

4. Heat Dissipation: Aluminum has excellent thermal conductivity, allowing for effective heat dissipation. When used in machinery, aluminum gears can help dissipate heat generated during operation, preventing overheating and maintaining optimal operating temperatures. Efficient heat dissipation contributes to the longevity and reliability of the machinery components.

5. Cost-Effective: Aluminum is generally more cost-effective compared to other metals commonly used for gears, such as steel or bronze. The abundance of aluminum as a raw material and its relatively low production costs make aluminum gears a cost-effective choice for machinery manufacturers. Additionally, the lightweight nature of aluminum gears can lead to cost savings in terms of transportation, installation, and energy consumption.

6. Design Flexibility: Aluminum gears offer design flexibility due to their ease of machining and formability. They can be manufactured with intricate tooth profiles and custom geometries to suit specific machinery requirements. The design flexibility of aluminum gears allows for optimization of gear performance, efficiency, and load-carrying capacity.

7. Electrical Conductivity: Aluminum is an excellent conductor of electricity. In machinery where electrical conductivity is required, such as in electric motors or equipment with electromagnetic components, aluminum gears can help facilitate efficient electrical connections and reduce electrical losses.

While aluminum gears offer numerous advantages, it’s important to consider their limitations. Aluminum has lower strength compared to materials like steel, which may restrict their use in high-load or high-torque applications. Additionally, proper lubrication and maintenance practices are crucial to ensure optimal performance and prevent excessive wear in aluminum gears.

In summary, the advantages of using aluminum gears in machinery include their lightweight nature, corrosion resistance, low noise levels, heat dissipation capabilities, cost-effectiveness, design flexibility, and electrical conductivity. These advantages make aluminum gears suitable for a wide range of machinery applications, particularly those where weight reduction, corrosion resistance, noise reduction, and thermal management are essential considerations.

China manufacturer CNC Machining Aluminium Gear Unit Nmrv025-090 Worm Gear Box spurs gearChina manufacturer CNC Machining Aluminium Gear Unit Nmrv025-090 Worm Gear Box spurs gear
editor by CX 2023-10-11