China Professional China 28t Hydraulic Trailer Turck Aluminum Landing Gear (02) with high quality

Product Description

 

Company Profile

 

HangZhou Hilite Auto Parts Co., Ltd., Established In 2012, Professional Chinese Supplier Of Trailer Parts, Truck Parts And Agricultural Vehicle Parts. We Are a Professional & Modern Company Who Specializes In R&D, Production And Sales Of Leaf Spring ,Axles, Suspension,Brake System(Relay Valve,Abs…),Tank Trailer Accessories,Etc.

Our Advantages

Our Products Are Mainly Sold To Southeast Asia, Europe, Central And South America, The Middle East And Africa. Our Value Is To Gain More Market Share By Profit&Value Delivery Our Customers And Partners. CZPT Parts is Compatible with BP / Fw Accessories, Can Be Couple with SINOTRUCK/BENZ/FAW/XIHU (WEST LAKE) DIS.FENG… Trucks & Trailers. CZPT Is Committed To Providing Customer With Professional And Precise Services, High-Quality Products with Sufficient Experiecne. 

OEM & Packing

Product Description

Hlt Specializes In R&D, Production And Sales Of Auto Leaf Springs, American &German Axles, Leaf Spring Suspensions, Air Suspensions, Hydraulic Suspensions, Rigid Suspensions And Other Types Of Suspensions, Single/Double Landing Gear, Electric Landing Gear, Hydraulic Landing Gear And Various Types Of Landing Gear , As Well As Tank Trailer Accessories Such As Manhole Covers, Discharge Valves, Subsea Valves, Etc. 500,000+ Types, One Stop Shopping For All.

 

Certifications

 

HLT Provide Guaranteed Services For All Products, Respect And Pay Attention To The Opinions Of Customers And Partners, Including Customizing And Developing New Products According To Customers’ Requirements, Believing Customer Satisfaction Is Our CZPT Pursuit. More Than 76% Of The Customers Who Have Used Hilite Products Have Become Our Loyal Customers, Who Have Established An Incredible Brand Effect For Us In The Local Area.

Factory View

 

We Would Like To Cooperate With You To Create More New Bonds In The Future.

FAQ

1Q: CAN YOU DESIGN AND PRODUCE THE PRODUCTS WE WANT?

A:We Have Rich Experience And Strong Technical Support To Design And Produce By Your Samples Or Drawings.Warmly Welcomed For Your Samples Or Drawing.

2Q:WHAT’S THE PROCESS OF PURCHASING ORDERS FROM YOU? 
A:1.Send Us Your Specific Demand,Such As Oem Numbers, Photos, Trailer Models,Ect. 
2.Confirm Our Quotation With Photos And Other Detials.
3.Negotiate About All Details You Need: Packing, Delivery Terms,Warranty, Ect. 
4.Sign The Contract For The Payment,We Will Make The Production On Time.

3Q.WHAT IS YOUR TERMS OF PAYMENT?
A: T/T 30% As Deposit, And 70% Before Delivery. 
L/C,T/T,D/P, Western Union,Paypal,Money Gram, Others
Photos And Videos Of The Products Will Be Provided Before Your Balance Payment.

4Q :WE WANT TO TRY IN A SMALL QUANTITY AS TRIAL ORDER,BUT LESS THAN YOUR MOQ. WHAT IS YOUR POLICY?
Sample Test And Sample Orders Could Be Accepted If We Have Ready Parts In Stock.

After-sales Service: 12month
Warranty: 12month
Type: Leg
Certification: ISO/TS16949, ISO
Loading Weight: by Need
ABS: by Need
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

aluminum gear

How do you choose the right type of aluminum alloy for specific applications?

Choosing the right type of aluminum alloy for specific applications involves considering various factors. Here’s a detailed explanation:

1. Mechanical Properties: Assess the required mechanical properties for the application, such as strength, hardness, toughness, and wear resistance. Different aluminum alloys offer varying levels of these properties. For example, 2000 series alloys are known for their high strength, while 6000 series alloys offer a good balance of strength and formability.

2. Corrosion Resistance: Evaluate the environmental conditions the aluminum alloy will be exposed to. Some alloys have better corrosion resistance, making them suitable for applications in corrosive environments. For instance, 5000 series alloys are known for their excellent corrosion resistance.

3. Formability: Consider the required formability and ease of fabrication. Certain aluminum alloys, like 1000 and 3000 series, have excellent formability, making them suitable for applications that involve complex shapes or intricate designs.

4. Heat Treatability: Determine if heat treatment is necessary to achieve the desired mechanical properties. Some aluminum alloys, such as 7000 series, are heat-treatable and can be strengthened through heat treatment processes like solution heat treatment and aging.

5. Weight: Evaluate the weight requirements of the application. Aluminum alloys have lower density compared to many other metals, making them ideal for lightweight applications where weight reduction is critical, such as aerospace or automotive industries.

6. Cost: Consider the budget and cost constraints of the project. Different aluminum alloys have varying costs based on factors such as availability, production processes, and alloying elements. Balancing the desired properties with the project’s budget is important.

7. Compatibility: Ensure that the chosen aluminum alloy is compatible with other materials or components in the application. Compatibility includes factors such as galvanic corrosion potential, thermal expansion coefficients, and joining methods.

8. Industry Standards: Check if there are specific industry standards or regulations that dictate the use of particular aluminum alloys for certain applications. Industries such as aerospace, automotive, and marine often have specific alloy requirements based on performance and safety standards.

9. Consult Experts: When in doubt, consult with material engineers, metallurgists, or industry experts who have expertise in aluminum alloys. They can provide valuable insights and guidance based on their knowledge and experience.

Considering these factors in combination with the specific requirements and constraints of the application will help in choosing the right type of aluminum alloy. It’s important to note that selecting the most suitable alloy may involve trade-offs between different properties and considerations.

In summary, selecting the right type of aluminum alloy for specific applications involves assessing mechanical properties, corrosion resistance, formability, heat treatability, weight requirements, cost, compatibility, industry standards, and seeking expert advice. Taking a comprehensive approach ensures that the chosen aluminum alloy meets the performance, durability, and cost objectives of the application.

aluminum gear

Can aluminum gears be used in aerospace and aviation applications?

Aluminum gears can indeed be used in aerospace and aviation applications. Here’s a detailed explanation:

1. Weight Reduction: Aluminum is known for its lightweight properties. In aerospace and aviation industries, weight reduction is a critical factor for improving fuel efficiency, increasing payload capacity, and enhancing overall performance. Aluminum gears offer a significant advantage over heavier materials like steel, helping to achieve weight savings without compromising strength and functionality.

2. Corrosion Resistance: Aluminum alloys are inherently corrosion-resistant, especially when compared to ferrous materials like steel. In aerospace and aviation environments, where exposure to moisture, humidity, and harsh chemicals is common, corrosion resistance is vital. Aluminum gears can withstand these corrosive conditions, reducing the risk of gear degradation and ensuring long-term reliability.

3. Thermal Conductivity: Aluminum has excellent thermal conductivity, allowing for efficient heat dissipation. In aerospace and aviation applications, where gears may be subjected to high-speed rotations or heavy loads, heat generation can be a concern. Aluminum gears can effectively transfer and dissipate heat, helping to maintain optimal operating temperatures and prevent overheating-related failures.

4. Low Noise and Vibration: Aluminum gears possess inherent damping properties, which can contribute to lower noise and vibration levels. In aerospace and aviation, noise reduction is crucial for passenger comfort, crew safety, and compliance with regulatory requirements. Aluminum gears can help reduce gear-induced noise and vibration, enhancing the overall user experience.

5. Manufacturability: Aluminum is a highly formable material, enabling complex gear designs and intricate shapes. It can be fabricated through various processes such as casting, machining, or powder metallurgy, offering flexibility in manufacturing techniques. This allows for the production of custom gear geometries and optimized designs to meet specific aerospace and aviation requirements.

6. Compatibility with Composites: The aerospace and aviation industries widely use composite materials for their high strength-to-weight ratios. Aluminum gears can be designed to be compatible with composite structures, integrating seamlessly with other components in aircraft or spacecraft systems. This compatibility allows for efficient transmission of motion and power within composite assemblies.

7. Regulatory Compliance: Aluminum is a well-established material in aerospace and aviation industries, and its use in gears aligns with industry standards and regulatory requirements. The performance and reliability of aluminum gears have been extensively studied and validated, making them a trusted choice for critical applications.

In summary, aluminum gears are well-suited for aerospace and aviation applications due to their lightweight nature, corrosion resistance, thermal conductivity, low noise and vibration characteristics, manufacturability, compatibility with composites, and compliance with industry standards. These factors make aluminum gears a viable option for enhancing performance, efficiency, and safety in the aerospace and aviation sectors.

aluminum gear

What are the advantages of using aluminum gears in machinery?

Using aluminum gears in machinery offers several advantages. Here’s a detailed explanation:

1. Lightweight: One of the primary advantages of aluminum gears is their lightweight nature. Aluminum is significantly lighter than other commonly used gear materials such as steel or cast iron. This lightweight property reduces the overall weight of the machinery, resulting in benefits such as improved energy efficiency, reduced inertia, and easier handling and installation.

2. Corrosion Resistance: Aluminum gears can exhibit good corrosion resistance, especially when they are made from corrosion-resistant aluminum alloys. This makes them suitable for machinery operating in environments where exposure to moisture, chemicals, or other corrosive substances is a concern. The corrosion resistance of aluminum gears helps prolong their lifespan and ensures reliable performance in such conditions.

3. Low Noise: Aluminum gears have inherent damping properties that help reduce noise levels in machinery. The natural damping characteristics of aluminum help absorb vibrations and minimize noise generation during gear operation. This makes aluminum gears particularly advantageous in applications where noise reduction is important, such as in precision machinery or equipment used in noise-sensitive environments.

4. Heat Dissipation: Aluminum has excellent thermal conductivity, allowing for effective heat dissipation. When used in machinery, aluminum gears can help dissipate heat generated during operation, preventing overheating and maintaining optimal operating temperatures. Efficient heat dissipation contributes to the longevity and reliability of the machinery components.

5. Cost-Effective: Aluminum is generally more cost-effective compared to other metals commonly used for gears, such as steel or bronze. The abundance of aluminum as a raw material and its relatively low production costs make aluminum gears a cost-effective choice for machinery manufacturers. Additionally, the lightweight nature of aluminum gears can lead to cost savings in terms of transportation, installation, and energy consumption.

6. Design Flexibility: Aluminum gears offer design flexibility due to their ease of machining and formability. They can be manufactured with intricate tooth profiles and custom geometries to suit specific machinery requirements. The design flexibility of aluminum gears allows for optimization of gear performance, efficiency, and load-carrying capacity.

7. Electrical Conductivity: Aluminum is an excellent conductor of electricity. In machinery where electrical conductivity is required, such as in electric motors or equipment with electromagnetic components, aluminum gears can help facilitate efficient electrical connections and reduce electrical losses.

While aluminum gears offer numerous advantages, it’s important to consider their limitations. Aluminum has lower strength compared to materials like steel, which may restrict their use in high-load or high-torque applications. Additionally, proper lubrication and maintenance practices are crucial to ensure optimal performance and prevent excessive wear in aluminum gears.

In summary, the advantages of using aluminum gears in machinery include their lightweight nature, corrosion resistance, low noise levels, heat dissipation capabilities, cost-effectiveness, design flexibility, and electrical conductivity. These advantages make aluminum gears suitable for a wide range of machinery applications, particularly those where weight reduction, corrosion resistance, noise reduction, and thermal management are essential considerations.

China Professional China 28t Hydraulic Trailer Turck Aluminum Landing Gear (02) with high qualityChina Professional China 28t Hydraulic Trailer Turck Aluminum Landing Gear (02) with high quality
editor by CX 2023-09-12