China Standard CZPT Stainless Steel Aluminum Precision Grinding Custom Helical Gears raw gear

Product Description

Ihf Stainless Steel Aluminum Precision Grinding Custom Helical Gears

Gear transmission relies on the thrust between gear teeth to transmit motion and power, also known as meshing transmission. With this gradual meshing, helical gears operate much more smoothly and quietly than spur gears. Therefore, almost all automobile transmissions use helical gears.Since the teeth on the helical gear present a certain angle, the gears will be under a certain amount of  stress when they mesh. Equipment using helical gears is equipped with bearings to withstand this pressure.

Product Description

Main Features:
Helical Gear
1. Produce strictly in accordance with ANSI or DIN standard dimension
2. Material: 1045 Carbon Steel
3. Bore: Finished bore
4. Module: 1~3

Product name Spur Gear & Helical Gear & Gear Shaft
Customized service OEM, drawings or samples customize
Materials Available Stainless Steel, Carbon Steel, S45C, SCM415, 20CrMoTi, 40Cr, Brass, SUS303/304, Bronze, Iron, Aluminum Alloy etc
Heat Treatment Quenching & Tempering, Carburizing & Quenching, High-frequency Hardening, Carbonitriding……
Surface Treatment Conditioning, Carburizing and Quenching,Tempering ,High frequency quenching, Tempering, Blackening, QPQ, Cr-plating, Zn-plating, Ni-plating, Electroplate, Passivation, Picking, Plolishing, Lon-plating, Chemical vapor deposition(CVD), Physical vapour deposition(PVD)…
BORE Finished bore, Pilot Bore, Special request
Processing Method Molding, Shaving, Hobbing, Drilling, Tapping, Reaming, Manual Chamfering, Grinding etc
Pressure Angle 20 Degree
Hardness 55- 60HRC
Size Customer Drawings & ISO standard
Package Wooden Case/Container and pallet, or made-to-order
Certificate ISO9001:2008
Machining Process Gear Hobbing, Gear Milling, Gear Shaping, Gear Broaching, Gear Shaving, Gear Grinding and Gear Lapping
Applications Printing Equipment Industry, Laser Equipment Industry, Automated Assemblyline Industry, Woodening Industry, Packaging Equipment Industry, Logistics storage Machinery Industry, Robot Industry, Machine Tool Equipment Industry

Company Profile

Packaging & Shipping

Packaging Polyethylene bag or oil paper for each item;
Pile on carton or as customer’s demand
Delivery of Samples By DHL, Fedex, UPS,  TNT, EMS
Lead time 10-15 working days as usual, 30days in busy season, it will based on the detailed order quantity.

FAQ

Main Markets? North America, South America, Eastern Europe , West Europe , North Europe, South Europe, Asia
How to order? * You send us drawing or sample
* We carry through project assessment
* We give you our design for your confirmation
* We make the sample and send it to you after you confirmed our design
* You confirm the sample then place an order and pay us 30% deposit
* We start producing
* When the goods is done, you pay us the balance after you confirmed pictures or tracking numbers.
* Trade is done, thank you!!

 

If you are interested in our products, please tell us which materials, type, width, length u want.

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car, Printing Equipment
Hardness: Hardened Tooth Surface
Gear Position: External Gear
Manufacturing Method: Rolling Gear
Toothed Portion Shape: Spur Gear
Material: Stainless Steel
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

aluminum gear

How do you choose the right type of aluminum alloy for specific applications?

Choosing the right type of aluminum alloy for specific applications involves considering various factors. Here’s a detailed explanation:

1. Mechanical Properties: Assess the required mechanical properties for the application, such as strength, hardness, toughness, and wear resistance. Different aluminum alloys offer varying levels of these properties. For example, 2000 series alloys are known for their high strength, while 6000 series alloys offer a good balance of strength and formability.

2. Corrosion Resistance: Evaluate the environmental conditions the aluminum alloy will be exposed to. Some alloys have better corrosion resistance, making them suitable for applications in corrosive environments. For instance, 5000 series alloys are known for their excellent corrosion resistance.

3. Formability: Consider the required formability and ease of fabrication. Certain aluminum alloys, like 1000 and 3000 series, have excellent formability, making them suitable for applications that involve complex shapes or intricate designs.

4. Heat Treatability: Determine if heat treatment is necessary to achieve the desired mechanical properties. Some aluminum alloys, such as 7000 series, are heat-treatable and can be strengthened through heat treatment processes like solution heat treatment and aging.

5. Weight: Evaluate the weight requirements of the application. Aluminum alloys have lower density compared to many other metals, making them ideal for lightweight applications where weight reduction is critical, such as aerospace or automotive industries.

6. Cost: Consider the budget and cost constraints of the project. Different aluminum alloys have varying costs based on factors such as availability, production processes, and alloying elements. Balancing the desired properties with the project’s budget is important.

7. Compatibility: Ensure that the chosen aluminum alloy is compatible with other materials or components in the application. Compatibility includes factors such as galvanic corrosion potential, thermal expansion coefficients, and joining methods.

8. Industry Standards: Check if there are specific industry standards or regulations that dictate the use of particular aluminum alloys for certain applications. Industries such as aerospace, automotive, and marine often have specific alloy requirements based on performance and safety standards.

9. Consult Experts: When in doubt, consult with material engineers, metallurgists, or industry experts who have expertise in aluminum alloys. They can provide valuable insights and guidance based on their knowledge and experience.

Considering these factors in combination with the specific requirements and constraints of the application will help in choosing the right type of aluminum alloy. It’s important to note that selecting the most suitable alloy may involve trade-offs between different properties and considerations.

In summary, selecting the right type of aluminum alloy for specific applications involves assessing mechanical properties, corrosion resistance, formability, heat treatability, weight requirements, cost, compatibility, industry standards, and seeking expert advice. Taking a comprehensive approach ensures that the chosen aluminum alloy meets the performance, durability, and cost objectives of the application.

aluminum gear

Can aluminum gears be used in consumer electronics products?

Yes, aluminum gears can be used in consumer electronics products. Here’s a detailed explanation:

1. Lightweight Design: Consumer electronics products, such as smartphones, laptops, or cameras, often prioritize portability and lightweight design. Aluminum gears offer a significant advantage in these applications due to their lightweight properties. By using aluminum gears, manufacturers can contribute to reducing the overall weight of the device, making it more convenient for users to carry and handle.

2. Corrosion Resistance: Aluminum alloys have good corrosion resistance, making them suitable for consumer electronics products that may be exposed to moisture, humidity, or environmental elements. This corrosion resistance helps protect the gears from degradation and ensures long-term reliability, even in demanding usage conditions.

3. Electrical Insulation: Aluminum is an electrically non-conductive material, which can be advantageous in consumer electronics applications. Aluminum gears can help prevent electrical short circuits and interference, contributing to the overall safety and performance of the electronic device.

4. Manufacturability: Aluminum is a highly versatile material that can be easily machined or formed into intricate gear shapes. This manufacturability allows for the production of custom-designed gears that meet the specific requirements of consumer electronics products. Manufacturers can optimize gear designs for efficient power transmission, noise reduction, and space utilization.

5. Noise and Vibration Damping: Aluminum gears possess inherent damping properties, which can help reduce noise and vibration in consumer electronics devices. By incorporating aluminum gears, manufacturers can improve the overall user experience by minimizing gear-induced noise and vibration, leading to quieter and more comfortable operation.

6. Heat Dissipation: Consumer electronics products often generate heat during operation, especially in devices with motors or high-performance components. Aluminum’s excellent thermal conductivity allows it to efficiently dissipate heat, helping to maintain optimal operating temperatures and prevent overheating-related issues. Aluminum gears can contribute to efficient heat management within the device.

7. Cosmetic Appeal: Aluminum gears can also offer aesthetic benefits in consumer electronics products. The use of aluminum can give a sleek and modern appearance to the gears, enhancing the overall visual appeal of the device. Manufacturers can take advantage of aluminum’s surface finish options, such as anodizing or polishing, to achieve desired cosmetic effects.

8. Compatibility with Plastic Components: Many consumer electronics devices incorporate plastic components due to their versatility and cost-effectiveness. Aluminum gears can be compatible with plastic parts, allowing for efficient integration within the overall device assembly. This compatibility facilitates the design and manufacturing of compact and lightweight consumer electronics products.

In summary, aluminum gears can be effectively used in consumer electronics products, offering advantages such as lightweight design, corrosion resistance, electrical insulation, manufacturability, noise and vibration damping, heat dissipation, cosmetic appeal, and compatibility with plastic components. By incorporating aluminum gears, manufacturers can optimize the performance, functionality, and user experience of consumer electronics devices.

aluminum gear

How do aluminum gears compare to other materials in terms of weight?

Aluminum gears have distinct advantages when it comes to weight. Here’s a detailed explanation:

1. Lightweight Nature: Aluminum gears are significantly lighter compared to gears made from other materials such as steel or cast iron. Aluminum has a lower density than these materials, resulting in gears that weigh less for the same size and shape.

2. Weight Reduction Benefits: The lightweight nature of aluminum gears offers several benefits:

  • Improved Energy Efficiency: The reduced weight of aluminum gears contributes to improved energy efficiency in machinery. With lighter gears, less energy is required to rotate or move the gears, resulting in reduced power consumption.
  • Reduced Inertia: The lower weight of aluminum gears reduces the inertia of rotating parts. This enables quicker acceleration and deceleration, leading to improved responsiveness and overall performance of the machinery.
  • Easier Handling and Installation: Aluminum gears are easier to handle and install due to their lighter weight. This simplifies the assembly process and reduces the physical effort required for maintenance or replacement of gears.

3. Comparison with Other Materials: When compared to materials like steel or cast iron, aluminum gears can be up to three times lighter, depending on the specific alloys and manufacturing methods used.

4. Trade-off with Strength: It’s important to note that the lightweight nature of aluminum gears comes with a trade-off in terms of strength. Aluminum has lower strength compared to materials like steel, which limits the load-carrying capacity of aluminum gears. Therefore, aluminum gears are typically used in applications with lighter loads and lower torque requirements.

5. Application Considerations: The choice between aluminum gears and gears made from other materials depends on the specific application requirements. In applications where weight reduction is crucial, such as automotive or aerospace systems, aluminum gears can provide significant advantages. However, in applications with heavy loads or high torque, materials with higher strength, like steel, may be more suitable.

In summary, aluminum gears are notably lighter compared to gears made from materials like steel or cast iron. Their lightweight nature offers benefits such as improved energy efficiency, reduced inertia, and easier handling and installation. However, it’s important to consider the trade-off in strength when choosing aluminum gears for specific applications. By carefully assessing the weight requirements and load conditions, industries can determine whether aluminum gears are the optimal choice for their machinery.

China Standard CZPT Stainless Steel Aluminum Precision Grinding Custom Helical Gears raw gearChina Standard CZPT Stainless Steel Aluminum Precision Grinding Custom Helical Gears raw gear
editor by CX 2023-09-18