Product Description
AZDriving Cylindrical Gear For CHINAMFG CHINAMFG AC16 Axle Truck Spare Parts Factory Price Driving Gear
Product advantages & features
(1) Forged with 20crmoti and finely ground teeth.
(2) OEM status: CHINAMFG Group, Sinotruk, CHINAMFG Axle, CHINAMFG Axle.
(3) Self inspection, patrol inspection and completion inspection to ensure 100% pass rate of products.
Factory Show
More Products
Truck Model | Sinotruk, Shacman, CHINAMFG Auman, CHINAMFG Xihu (West Lake) Dis., Xihu (West Lake) Dis.feng, Xihu (West Lake) Dis.feng Liuqi Balong, North BENZ( BEIBEN), C&C, JAC, etc. | |
Product catalogue | Axle | Wheel Assembly |
Differential Assembly | ||
Main Reducer Assembly | ||
Inner Ring Gear& Bracket | ||
Basin Angle Gear/ Bevel Gear | ||
Axle Shaft/ Half Shaft & Through Shaft | ||
Axle Housing& Axle Assembly | ||
Steering knuckle & Front Axle | ||
Gear | ||
Brake Drum& Wheel Hub | ||
Flange | ||
Bearing | ||
Main Reducer Housing | ||
Oil Seal Seat | ||
Nut& Shim Series | ||
Brake Backing Plate | ||
Chassis Support Products | Leaf Spring Bracket | |
Drop Arm Series | ||
Bracket Series | ||
Leaf Spring Shackle Series | ||
Balanced Suspension Series | Balance Shaft Assembly | |
Balance Shaft Housing | ||
Axle Spring Seat | ||
Thrust Rod | ||
Balance Shaft Parts | ||
Shock Absorber Series | Shock Absorber | |
Shock Absorbing Airbag | ||
Steering System | Power Steering Pump | |
Power Steering Gear | ||
Rubber Products | Oil Seal | |
Rubber Support | ||
Thrust Rod Rubber Core | ||
Truck Belt | ||
Engine support | ||
Other | ||
Clutch Series | Clutch Pressure Plate | |
Clutch Disc | ||
Flywheel Assembly | ||
Flywheel Ring Gear | ||
Adjusting Arm Series |
Brand Culture
Packaging & Shipping
Working Principle
Function of gear transmission
1.Variable speed: By meshing 2 gears of different sizes, the speed of the gears can be changed. For example, the gearbox gear can reduce or increase the speed from the engine to meet the needs of the car;
2.Torque change: The meshing of 2 gears of different sizes changes the transmitted torque while changing the speed of the gears. For example, the car gearbox, the main reducer in the drive axle, can change the torque of the car;
3.Change direction: the power action direction of some vehicle engines is perpendicular to the driving direction of the vehicle. The transmission direction of power must be changed to drive the vehicle. This device is usually the main reducer and differential of the car.
Gear transmission has the advantages of high transmission efficiency, compact structure, reliable gear transmission, long service life and stable transmission ratio. Its transmission efficiency can reach 99%. Among the commonly used mechanical transmissions, gear transmission has high efficiency; its disadvantage is that compared with belt transmission and chain transmission, the manufacturing and installation accuracy of gears are high, and the price is more expensive. It is not suitable for transmission with too large distance between shafts.
Basic types of gear transmissions
Gear drive | Plane gear transmission | Spur gear drive | Inner Meshing |
External Meshing | |||
Rack and pinion | |||
Helical Gear Drive | Inner Meshing | ||
External Meshing | |||
Rack and pinion | |||
Herringbone gear movement | |||
Space gear transmission | Transfer intersecting motion | Spur gear | |
Helical gear | |||
Curved gear | |||
Transfer staggered axis motion | Crossed helical gear transmission | ||
Worm turbine | |||
Hypoid gear |
Spur gear and helical gear
Spur gears enter and exit meshing along the whole tooth width at the same time. Its transmission efficiency is very high. Its disadvantages are poor stability, impact and noise.
The tooth meshing process of helical gear is longer than that of spur gear, and the number of teeth participating in meshing is also more than that of spur gear. Therefore, the helical gear transmission is stable, the bearing capacity is strong, and the noise and impact are small. The main disadvantage of helical gear is that the axial component force will be generated when the helical gear surface is subjected to the normal force, and the thrust bearing needs to be installed, which complicates the structure.
Lubrication of gear transmission
There is relative sliding and friction between gear transmission tooth surfaces, which will cause tooth surface wear, increase transmission power consumption and reduce transmission efficiency. Therefore, lubricant must be used to reduce wear and accelerate heat dissipation. This lubricant is gear oil. Different kinds of gears on the car are lubricated with different gear oils, which must not be added wrong. For example, automatic transmission oil and CVT transmission oil cannot be mixed.
Honor Certificate
FAQ
Q1. Are you a factory or trading company?
We are a factory integrating research, development, production and sales.
Q2. What are the advantages of your products?
We support product customization to meet customer needs for special products. We can strictly control the products from raw materials to production, processing, product quality inspection, delivery, packaging, etc., and provide customers with high-end products and the most advantageous prices.
Q3. How about products price?
We are a factory, all products are direct sale at factory price. For the same price, we will provide the best quality; for the same quality, we have the most advantageous price.
Q4. What is your terms of packing?
We have branded packaging and neutral packaging, and we can also do what you want with authorization. This is flexible.
Q5. How to guarantee your after-sales service?
Strict inspection during production, Strictly check the products before shipment to ensure our packaging in good condition. Track and receive feedback from customer regularly. Our products warranty is 365 days.
Each product provides quality assurance service. If there is a problem with the product within the warranty period, the customer can negotiate with us in detail about the related claims, and we will do our best to satisfy the customer.
Q6. How can I accurately buy the products I need?
We need accurate product number, If you can’t provide product number, you can send us your product picture, or tell us your truck model, engine name plate, and so on. we will
determine exactly what you need products.
Q7. Do you accept third party inspection?
Yes.we do
Q8. How about your delivery time?
Generally, it will take 3 to 10 days after receiving your advance payment. The specific delivery time depends on the items and the quantity of your order.
Q9. What are your brand agency conditions and advantages?
After we CHINAMFG an agent in 1 city, we will not CHINAMFG a second company to protect the agent’s brand advantage and price advantage. And we will help the agent develop customers and solve all kinds of difficult and miscellaneous problems about products.
Q10. What is your terms of payment?
By TT or LC. We’ll show you the photos of the products and packages before you pay the balance.
After-sales Service: | Support |
---|---|
Warranty: | 12 Months |
Type: | Truck Driving Gear |
Samples: |
US$ 75/Piece
1 Piece(Min.Order) | Order Sample |
---|
Customization: |
Available
| Customized Request |
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
How does a differential gear distribute power between the wheels?
A differential gear is responsible for distributing power between the wheels of a vehicle, allowing them to rotate at different speeds while maintaining torque transfer. Here’s a detailed explanation of how a differential gear accomplishes this:
1. Power Input:
The differential gear receives power from the transmission or driveshaft connected to the engine. This power is transmitted to the differential assembly, which is typically located in the axle housing.
2. Ring and Pinion Gears:
Within the differential assembly, the power from the driveshaft is transferred to the ring and pinion gears. The ring gear is a large gear that surrounds the differential assembly, while the pinion gear is a smaller gear connected to the driveshaft. The interaction between these gears allows the power to be redirected.
3. Side Gears and Spider Gears:
The ring gear is connected to side gears, also known as bevel gears, through a set of small gears called spider gears. The side gears are attached to the axle shafts, which are responsible for transmitting power to the wheels. The spider gears allow the side gears to rotate independently of each other while maintaining torque transfer.
4. Differential Action:
As the vehicle moves, the differential gears enable the wheels to rotate at different speeds during turns. When the vehicle is moving in a straight line, the spider gears rotate smoothly, allowing equal power distribution to both wheels. However, during a turn, the inside wheel travels a shorter distance than the outside wheel, causing them to rotate at different speeds.
5. Speed and Torque Distribution:
The differential gear adjusts the speed and torque distribution between the wheels based on their rotational differences. When the vehicle is turning, the spider gears allow one wheel to rotate faster than the other, ensuring that torque is transferred to the wheel with better traction. This allows the wheels to rotate at different speeds, preventing tire scrubbing and providing smooth cornering.
6. Limited-Slip and Locking Differentials:
In certain differential systems, such as limited-slip differentials or locking differentials, additional mechanisms are incorporated to enhance traction and power distribution. Limited-slip differentials use clutch packs or friction plates to provide a predetermined amount of resistance, allowing some speed differentiation between the wheels while still transferring power. Locking differentials, on the other hand, lock the side gears together, ensuring equal torque distribution to both wheels, regardless of traction conditions.
7. Differential Types:
There are various types of differentials, including open differentials, limited-slip differentials, electronic differentials, torque vectoring differentials, and more. Each type has its own mechanisms and technologies to distribute power between the wheels effectively, depending on the vehicle’s requirements and driving conditions.
In summary, a differential gear distributes power between the wheels by utilizing a system of gears, including ring and pinion gears, side gears, and spider gears. The differential action allows the wheels to rotate at different speeds during turns, ensuring smooth cornering and preventing tire scrubbing. Additional mechanisms, such as limited-slip or locking differentials, can further enhance traction and power distribution in various driving conditions.
What are the considerations for choosing the right type of differential gear for a vehicle?
When selecting the appropriate type of differential gear for a vehicle, several considerations come into play. Choosing the right differential gear involves assessing factors such as vehicle characteristics, intended use, driving conditions, and desired performance. Here’s a detailed explanation of the considerations for choosing the right type of differential gear:
- Vehicle Type: The type of vehicle, whether it’s a passenger car, SUV, truck, or performance vehicle, plays a significant role in determining the appropriate differential gear. Different types of vehicles have varying weight distributions, power outputs, and handling characteristics, which influence the optimal choice of differential gear.
- Driving Conditions: The intended driving conditions are crucial in selecting the right differential gear. Factors such as road surface, weather conditions, and terrain should be considered. For example, vehicles driven primarily on paved roads may benefit from different differential gear options compared to off-road vehicles that frequently encounter challenging terrain or vehicles that operate in regions with snowy or icy conditions.
- Performance Requirements: The desired performance attributes of the vehicle are important considerations. Some drivers prioritize acceleration and high-speed performance, while others focus on off-road capabilities, towing capacity, or fuel efficiency. Differential gears can be chosen to optimize specific performance aspects, such as maximizing traction, improving handling, enhancing torque delivery, or achieving better fuel economy.
- Traction Needs: The level of traction required is a key factor in selecting the right differential gear. Vehicles that need maximum traction in challenging conditions, such as racing cars, off-road vehicles, or vehicles used in low-grip environments, may benefit from limited-slip differentials or locking differentials. These differential types help distribute power to the wheels with the most grip, enhancing traction and maintaining vehicle control.
- Driving Dynamics: The desired driving dynamics and handling characteristics also influence the choice of differential gear. Some drivers prefer a more predictable and balanced handling, while others may desire more aggressive cornering capabilities. Differential gears with specific characteristics, such as torque vectoring differentials, can enhance these driving dynamics by actively managing torque distribution between individual wheels.
- Budget: Cost considerations are also significant when choosing a differential gear. Different types of differential gears vary in terms of complexity, features, and pricing. It’s essential to evaluate the budget constraints and weigh the cost against the desired performance benefits and requirements.
In summary, selecting the right type of differential gear for a vehicle involves considering factors such as vehicle type, driving conditions, performance requirements, traction needs, driving dynamics, and budget. By carefully assessing these considerations, drivers can choose a differential gear that aligns with their vehicle’s characteristics, intended use, and performance objectives, ultimately enhancing traction, handling, and overall driving experience.
What is a differential gear and how does it work?
A differential gear is a component found in vehicles that allows the wheels to rotate at different speeds while receiving power from the engine. Here’s a detailed explanation:
A differential is commonly used in cars, trucks, and other vehicles with driven wheels. Its primary function is to distribute torque (rotational force) from the engine to the wheels while compensating for differences in wheel speeds, especially during turns or when driving on uneven surfaces.
Basic Structure:
A typical differential gear consists of several key components:
- Differential Case: It is the outer housing that encloses the differential assembly.
- Ring Gear: The ring-shaped gear located on the inside of the differential case.
- Pinion Gear: The small gear connected to the driveshaft, which meshes with the ring gear.
- Side Gears: Two gears connected to the axle shafts, which mesh with the pinion gear.
- Spider Gears (Planetary Gears): These gears are positioned between the side gears and allow the wheels to rotate at different speeds.
Function and Operation:
When power is transmitted from the engine to the differential, the pinion gear receives the rotational force from the driveshaft and meshes with the ring gear. As the pinion gear rotates, it rotates the ring gear and, in turn, the differential case.
During straight-line driving, when both wheels have equal traction and are rotating at the same speed, the spider gears rotate freely on their respective shafts. This allows the side gears to rotate at the same speed as the differential case, transmitting equal torque to both wheels.
However, when the vehicle turns or one wheel encounters a different traction condition (such as being on a slippery surface), the wheels need to rotate at different speeds. In this situation, the spider gears are forced to rotate along with the side gears due to the difference in rotational speeds between the two wheels.
As the spider gears rotate, they allow the side gears to rotate at different speeds, compensating for the variation in wheel speeds. This enables the wheels to rotate independently while still receiving power from the differential. The differential allows the outer wheel (on the outside of the turn) to rotate at a higher speed while the inner wheel (on the inside of the turn) rotates at a slower speed.
The differential gear system ensures smooth power delivery to the wheels, improves vehicle stability during turns, and reduces tire wear and stress on the drivetrain components.
It’s important to note that there are different types of differentials, such as open differentials, limited-slip differentials, and locking differentials. Each type has its own characteristics and is suited for different driving conditions and vehicle types.
In summary, a differential gear is a crucial component in vehicles that allows the wheels to rotate at different speeds while distributing power from the engine. By utilizing a combination of gears, it enables smooth and efficient power transmission to the wheels, particularly during turns or when encountering varying traction conditions.
editor by CX 2023-11-10