China Standard Factory Price High Precision Steel Aluminum Transmission Helical Gear hypoid bevel gear

Product Description

Factory Price High Precision Steel Aluminum Transmission Helical Gear

Gear transmission relies on the thrust between gear teeth to transmit motion and power, also known as meshing transmission. With this gradual meshing, helical gears operate much more smoothly and quietly than spur gears. Therefore, almost all automobile transmissions use helical gears.Since the teeth on the helical gear present a certain angle, the gears will be under a certain amount of  stress when they mesh. Equipment using helical gears is equipped with bearings to withstand this pressure.

Product Description

Main Features:

Spur Gear
1. Produce strictly in accordance with ANSI or DIN standard dimension
2. Material: SCM 415 steel 
3. Bore: Finished bore
4. Precision grade: DIN 5 to DIN 7
5. Surface treatment: Carburizing and Quenching
6. Module: From 1 to 4
7. Tooth: From Z15 to Z70 

Product name Helical Gear
Customized service OEM, drawings or samples customize
Materials Available Stainless Steel, Carbon Steel, S45C, SCM415, 20CrMoTi, 40Cr, Brass, SUS303/304, Bronze, Iron, Aluminum Alloy etc
Heat Treatment Quenching & Tempering, Carburizing & Quenching, High-frequency Hardening, Carbonitriding……
Surface Treatment Conditioning, Carburizing and Quenching,Tempering ,High frequency quenching, Tempering, Blackening, QPQ, Cr-plating, Zn-plating, Ni-plating, Electroplate, Passivation, Picking, Plolishing, Lon-plating, Chemical vapor deposition(CVD), Physical vapour deposition(PVD)…
BORE Finished bore, Pilot Bore, Special request
Processing Method Molding, Shaving, Hobbing, Drilling, Tapping, Reaming, Manual Chamfering, Grinding etc
Pressure Angle 20 Degree
Hardness 55- 60HRC
Size Customer Drawings & ISO standard
Package Wooden Case/Container and pallet, or made-to-order
Certificate ISO9001:2008
Machining Process Gear Hobbing, Gear Milling, Gear Shaping, Gear Broaching, Gear Shaving, Gear Grinding and Gear Lapping
Applications Printing Equipment Industry, Laser Equipment Industry, Automated Assemblyline Industry, Woodening Industry, Packaging Equipment Industry, Logistics storage Machinery Industry, Robot Industry, Machine Tool Equipment Industry

Company Profile

Packaging & Shipping

FAQ

Main Markets? North America, South America, Eastern Europe , West Europe , North Europe, South Europe, Asia
How to order? * You send us drawing or sample
* We carry through project assessment
* We give you our design for your confirmation
* We make the sample and send it to you after you confirmed our design
* You confirm the sample then place an order and pay us 30% deposit
* We start producing
* When the goods is done, you pay us the balance after you confirmed pictures or tracking numbers.
* Trade is done, thank you!!

If you are interested in our products, please tell us which materials, type, width, length u want. 

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car, New Energy Industry
Hardness: Hardened Tooth Surface
Gear Position: External Gear
Manufacturing Method: Rolling Gear
Toothed Portion Shape: Double Helical Gear
Material: Stainless Steel
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

aluminum gear

How do you choose the right type of aluminum alloy for specific applications?

Choosing the right type of aluminum alloy for specific applications involves considering various factors. Here’s a detailed explanation:

1. Mechanical Properties: Assess the required mechanical properties for the application, such as strength, hardness, toughness, and wear resistance. Different aluminum alloys offer varying levels of these properties. For example, 2000 series alloys are known for their high strength, while 6000 series alloys offer a good balance of strength and formability.

2. Corrosion Resistance: Evaluate the environmental conditions the aluminum alloy will be exposed to. Some alloys have better corrosion resistance, making them suitable for applications in corrosive environments. For instance, 5000 series alloys are known for their excellent corrosion resistance.

3. Formability: Consider the required formability and ease of fabrication. Certain aluminum alloys, like 1000 and 3000 series, have excellent formability, making them suitable for applications that involve complex shapes or intricate designs.

4. Heat Treatability: Determine if heat treatment is necessary to achieve the desired mechanical properties. Some aluminum alloys, such as 7000 series, are heat-treatable and can be strengthened through heat treatment processes like solution heat treatment and aging.

5. Weight: Evaluate the weight requirements of the application. Aluminum alloys have lower density compared to many other metals, making them ideal for lightweight applications where weight reduction is critical, such as aerospace or automotive industries.

6. Cost: Consider the budget and cost constraints of the project. Different aluminum alloys have varying costs based on factors such as availability, production processes, and alloying elements. Balancing the desired properties with the project’s budget is important.

7. Compatibility: Ensure that the chosen aluminum alloy is compatible with other materials or components in the application. Compatibility includes factors such as galvanic corrosion potential, thermal expansion coefficients, and joining methods.

8. Industry Standards: Check if there are specific industry standards or regulations that dictate the use of particular aluminum alloys for certain applications. Industries such as aerospace, automotive, and marine often have specific alloy requirements based on performance and safety standards.

9. Consult Experts: When in doubt, consult with material engineers, metallurgists, or industry experts who have expertise in aluminum alloys. They can provide valuable insights and guidance based on their knowledge and experience.

Considering these factors in combination with the specific requirements and constraints of the application will help in choosing the right type of aluminum alloy. It’s important to note that selecting the most suitable alloy may involve trade-offs between different properties and considerations.

In summary, selecting the right type of aluminum alloy for specific applications involves assessing mechanical properties, corrosion resistance, formability, heat treatability, weight requirements, cost, compatibility, industry standards, and seeking expert advice. Taking a comprehensive approach ensures that the chosen aluminum alloy meets the performance, durability, and cost objectives of the application.

aluminum gear

Can aluminum gears be used in consumer electronics products?

Yes, aluminum gears can be used in consumer electronics products. Here’s a detailed explanation:

1. Lightweight Design: Consumer electronics products, such as smartphones, laptops, or cameras, often prioritize portability and lightweight design. Aluminum gears offer a significant advantage in these applications due to their lightweight properties. By using aluminum gears, manufacturers can contribute to reducing the overall weight of the device, making it more convenient for users to carry and handle.

2. Corrosion Resistance: Aluminum alloys have good corrosion resistance, making them suitable for consumer electronics products that may be exposed to moisture, humidity, or environmental elements. This corrosion resistance helps protect the gears from degradation and ensures long-term reliability, even in demanding usage conditions.

3. Electrical Insulation: Aluminum is an electrically non-conductive material, which can be advantageous in consumer electronics applications. Aluminum gears can help prevent electrical short circuits and interference, contributing to the overall safety and performance of the electronic device.

4. Manufacturability: Aluminum is a highly versatile material that can be easily machined or formed into intricate gear shapes. This manufacturability allows for the production of custom-designed gears that meet the specific requirements of consumer electronics products. Manufacturers can optimize gear designs for efficient power transmission, noise reduction, and space utilization.

5. Noise and Vibration Damping: Aluminum gears possess inherent damping properties, which can help reduce noise and vibration in consumer electronics devices. By incorporating aluminum gears, manufacturers can improve the overall user experience by minimizing gear-induced noise and vibration, leading to quieter and more comfortable operation.

6. Heat Dissipation: Consumer electronics products often generate heat during operation, especially in devices with motors or high-performance components. Aluminum’s excellent thermal conductivity allows it to efficiently dissipate heat, helping to maintain optimal operating temperatures and prevent overheating-related issues. Aluminum gears can contribute to efficient heat management within the device.

7. Cosmetic Appeal: Aluminum gears can also offer aesthetic benefits in consumer electronics products. The use of aluminum can give a sleek and modern appearance to the gears, enhancing the overall visual appeal of the device. Manufacturers can take advantage of aluminum’s surface finish options, such as anodizing or polishing, to achieve desired cosmetic effects.

8. Compatibility with Plastic Components: Many consumer electronics devices incorporate plastic components due to their versatility and cost-effectiveness. Aluminum gears can be compatible with plastic parts, allowing for efficient integration within the overall device assembly. This compatibility facilitates the design and manufacturing of compact and lightweight consumer electronics products.

In summary, aluminum gears can be effectively used in consumer electronics products, offering advantages such as lightweight design, corrosion resistance, electrical insulation, manufacturability, noise and vibration damping, heat dissipation, cosmetic appeal, and compatibility with plastic components. By incorporating aluminum gears, manufacturers can optimize the performance, functionality, and user experience of consumer electronics devices.

aluminum gear

What are the advantages of using aluminum gears in machinery?

Using aluminum gears in machinery offers several advantages. Here’s a detailed explanation:

1. Lightweight: One of the primary advantages of aluminum gears is their lightweight nature. Aluminum is significantly lighter than other commonly used gear materials such as steel or cast iron. This lightweight property reduces the overall weight of the machinery, resulting in benefits such as improved energy efficiency, reduced inertia, and easier handling and installation.

2. Corrosion Resistance: Aluminum gears can exhibit good corrosion resistance, especially when they are made from corrosion-resistant aluminum alloys. This makes them suitable for machinery operating in environments where exposure to moisture, chemicals, or other corrosive substances is a concern. The corrosion resistance of aluminum gears helps prolong their lifespan and ensures reliable performance in such conditions.

3. Low Noise: Aluminum gears have inherent damping properties that help reduce noise levels in machinery. The natural damping characteristics of aluminum help absorb vibrations and minimize noise generation during gear operation. This makes aluminum gears particularly advantageous in applications where noise reduction is important, such as in precision machinery or equipment used in noise-sensitive environments.

4. Heat Dissipation: Aluminum has excellent thermal conductivity, allowing for effective heat dissipation. When used in machinery, aluminum gears can help dissipate heat generated during operation, preventing overheating and maintaining optimal operating temperatures. Efficient heat dissipation contributes to the longevity and reliability of the machinery components.

5. Cost-Effective: Aluminum is generally more cost-effective compared to other metals commonly used for gears, such as steel or bronze. The abundance of aluminum as a raw material and its relatively low production costs make aluminum gears a cost-effective choice for machinery manufacturers. Additionally, the lightweight nature of aluminum gears can lead to cost savings in terms of transportation, installation, and energy consumption.

6. Design Flexibility: Aluminum gears offer design flexibility due to their ease of machining and formability. They can be manufactured with intricate tooth profiles and custom geometries to suit specific machinery requirements. The design flexibility of aluminum gears allows for optimization of gear performance, efficiency, and load-carrying capacity.

7. Electrical Conductivity: Aluminum is an excellent conductor of electricity. In machinery where electrical conductivity is required, such as in electric motors or equipment with electromagnetic components, aluminum gears can help facilitate efficient electrical connections and reduce electrical losses.

While aluminum gears offer numerous advantages, it’s important to consider their limitations. Aluminum has lower strength compared to materials like steel, which may restrict their use in high-load or high-torque applications. Additionally, proper lubrication and maintenance practices are crucial to ensure optimal performance and prevent excessive wear in aluminum gears.

In summary, the advantages of using aluminum gears in machinery include their lightweight nature, corrosion resistance, low noise levels, heat dissipation capabilities, cost-effectiveness, design flexibility, and electrical conductivity. These advantages make aluminum gears suitable for a wide range of machinery applications, particularly those where weight reduction, corrosion resistance, noise reduction, and thermal management are essential considerations.

China Standard Factory Price High Precision Steel Aluminum Transmission Helical Gear hypoid bevel gearChina Standard Factory Price High Precision Steel Aluminum Transmission Helical Gear hypoid bevel gear
editor by CX 2023-10-07