Product Description
Product Description
Material : | 42CrMo, 20CrMnMo, 20Cr2Ni4, 35CrMo, 20CrMnTi and Other high intensity alloy steel |
Tooth Flank : | Tooth flank carburization and nitrification, with rigidity of HRC58-62 |
Gear precision : | Grade V |
Precise measurement : | Precise measurement and surface finishes are available |
Material : | High dense alloy or other materials is also available |
Customization : | Customer drawing and samples are welcome |
Detailed Photos
Packaging |
Gear Features
Company Profile
For 12 years, Mr. Zhou has stood for innovative products, a passion for technology, responsibility.
As a globally technology manufacture company, we put all of energy to promise quality and excellence. We’ve organized resources into new and established markets and developed gears, sheaves and so on.
Our results announcement is over USD 10, 000, 000 per fiscal year. Last but not least, we’ve doing hard work to perfect ourselves, tapping business opportunities.
Note: For special order, please write and provide drawing sample!
Certifications
Customer Visiting
Our Services
Services:
Best Services For You
1) We can provide OEM service and design for you
2) We can pack the goods according to your requirement
3) We test the quality of all products before delivery
4) We guarantee our reply in 24 hours of working day
5) We can communicate with you in different languages
6) High quality, best price, punctual shipment, good after-sale service will be guaranteed.
FAQ
FAQ:
Q: What information should I provide if I want to order the products?
1) Product information: Quantity, specification
2) Delivery time required.
3) Shipping information: Company name, address, phone number, destination seaport/air port.
4) Forwarder’s contact details if there is any in China.
Q: How about your payment terms?
A: 30% -50%deposit, with the balance before delivery, we accept T/T and L/C at sight.
Q: Can I use our own logo?
A: Yes, we can produce by using your own logo if you need.
Q: How about sample & MOQ policy?
A: Welcome sample order. MOQ can be 1 set.
Q: What is your lead time for your goods?
A: Normally 30 days after confirmed order.
Application: | Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car |
---|---|
Hardness: | Hardened Tooth Surface |
Gear Position: | Internal Gear |
Manufacturing Method: | Cut Gear |
Toothed Portion Shape: | Bevel Wheel |
Material: | 42CrMo |
Customization: |
Available
| Customized Request |
---|
How does a differential gear system contribute to tire longevity?
A differential gear system plays a crucial role in tire longevity by ensuring optimal traction, minimizing tire wear, and distributing torque effectively. Here’s a detailed explanation of how a differential gear system contributes to tire longevity:
- 1. Traction Optimization: The differential gear system allows the wheels on the same axle to rotate at different speeds when the vehicle is turning. This capability helps improve traction and reduces tire scrubbing, which occurs when the tires resist turning and skid instead. By optimizing traction during turns, the differential gear system helps prevent excessive tire wear caused by scrubbing.
- 2. Torque Distribution: The differential gear system distributes torque from the engine to the wheels, allowing each wheel to receive an appropriate amount of power based on traction conditions. This distribution helps prevent wheel spin and excessive tire wear. By ensuring that torque is evenly distributed, the differential gear system helps maintain balanced tire wear across all wheels.
- 3. Wheel Speed Synchronization: When driving in a straight line, the differential gear system synchronizes the rotational speeds of the wheels. This synchronization minimizes tire scrubbing and reduces uneven wear. By keeping the wheels rotating at similar speeds, the differential gear system promotes even tire wear, extending tire longevity.
- 4. Cornering Stability: During cornering, the differential gear system allows the outer wheel to rotate faster than the inner wheel. This speed difference is necessary to accommodate the varying distances each wheel travels around the curve. By enabling smooth and controlled cornering, the differential gear system helps prevent excessive tire wear caused by lateral forces.
- 5. Reduced Stress on Tires: A properly functioning differential gear system helps reduce stress on tires by allowing them to rotate freely and independently. By mitigating excessive forces and minimizing tire scrubbing, the differential gear system helps decrease wear and tear on the tires. This reduction in stress contributes to prolonged tire life.
- 6. Traction Control: Some modern vehicles are equipped with advanced differential systems, such as electronic limited-slip differentials or torque vectoring differentials. These systems actively manage torque distribution to individual wheels based on traction conditions. By optimizing traction control, these differential systems help minimize tire slippage, improve grip, and reduce tire wear.
- 7. Proper Maintenance: Regular maintenance of the differential gear system is essential for tire longevity. This includes periodic inspection of the differential components, ensuring proper lubrication, and addressing any issues promptly. Well-maintained differentials help ensure optimal performance, reducing the risk of tire wear and extending tire life.
Overall, a well-functioning and properly maintained differential gear system plays a vital role in tire longevity. It optimizes traction, distributes torque effectively, synchronizes wheel speeds, promotes cornering stability, and reduces stress on tires. By understanding and maintaining the differential gear system, drivers can help maximize tire life and minimize the need for premature tire replacements.
How do differential gears function in both front-wheel-drive and rear-wheel-drive vehicles?
In both front-wheel-drive and rear-wheel-drive vehicles, differential gears serve the same fundamental purpose of distributing power from the engine to the wheels while allowing them to rotate at different speeds. However, their specific configurations and functions differ between these two types of drivetrains. Here’s a detailed explanation of how differential gears function in both front-wheel-drive and rear-wheel-drive vehicles:
Front-Wheel-Drive Vehicles:
In front-wheel-drive vehicles, the differential gears are typically integrated into the transaxle assembly, which combines the transmission and differential into a single unit. Here’s how the differential gears function in front-wheel-drive vehicles:
- Power Input: The engine’s power is transmitted through the transmission to the transaxle assembly.
- Ring and Pinion Gears: The power from the transaxle is delivered to a set of ring and pinion gears within the differential assembly. These gears are responsible for distributing torque to the front wheels.
- Spider Gears: The ring gear is connected to a carrier that houses multiple smaller gears called spider gears. These spider gears allow the front wheels to rotate at different speeds during turns.
- Equal Torque Distribution: In front-wheel-drive vehicles, the differential gears prioritize equal torque distribution between the two front wheels. This design helps maintain traction and stability during acceleration and cornering.
- Traction Control: Some front-wheel-drive vehicles may also incorporate additional features in the differential assembly, such as electronic limited-slip differentials or traction control systems. These features help optimize traction by transferring power to the wheel with better grip, reducing wheel spin and improving overall performance.
Rear-Wheel-Drive Vehicles:
In rear-wheel-drive vehicles, the differential gears are typically located in the rear axle assembly. Here’s how the differential gears function in rear-wheel-drive vehicles:
- Power Input: The engine’s power is transmitted through the transmission to the driveshaft, which connects to the rear axle assembly.
- Drive Pinion and Ring Gear: The driveshaft is connected to a drive pinion gear, which meshes with a larger ring gear. This gear set is responsible for transferring power to the rear wheels.
- Spider Gears: Similar to front-wheel-drive vehicles, rear-wheel-drive vehicles also have spider gears housed within the differential assembly. The spider gears allow the rear wheels to rotate at different speeds during turns.
- Torque Distribution: In rear-wheel-drive vehicles, the differential gears distribute torque to the rear wheels in a manner that prioritizes rear-wheel traction and propulsion. This configuration is particularly beneficial for vehicle acceleration and load-carrying capability.
- Enhanced Features: Rear-wheel-drive vehicles may also incorporate advanced differential systems, such as limited-slip differentials or electronic locking differentials, to optimize traction and performance. These features help improve grip, especially in challenging driving conditions or when driving off-road.
In summary, differential gears function differently in front-wheel-drive and rear-wheel-drive vehicles due to their distinct drivetrain configurations. In front-wheel-drive vehicles, the differential gears are typically integrated into the transaxle assembly and prioritize equal torque distribution to the front wheels. In rear-wheel-drive vehicles, the differential gears are located in the rear axle assembly and focus on torque distribution to the rear wheels for propulsion. Understanding the specific functions of differential gears in each drivetrain type is essential for optimizing vehicle performance, traction, and stability.
How do differential gears contribute to handling and stability in vehicles?
Differential gears play a significant role in enhancing the handling and stability of vehicles. Here’s a detailed explanation:
Differential gears contribute to handling and stability in vehicles in several ways:
1. Independent Wheel Rotation:
One of the primary contributions of differential gears is allowing the wheels to rotate independently. During turns, the outer wheel needs to travel a greater distance than the inner wheel. The differential gear enables this speed differentiation, ensuring that each wheel can rotate at a different speed while still receiving power from the engine. This independent wheel rotation enables smoother and more controlled handling during turns.
2. Balanced Power Distribution:
The differential gear distributes torque between the wheels, allowing them to receive power and propel the vehicle forward. By balancing the power distribution, the differential helps maintain stability during acceleration and deceleration. It ensures that both wheels receive an appropriate amount of power, preventing excessive wheel spin or traction loss, which can affect the vehicle’s stability.
3. Enhanced Traction:
Effective traction is crucial for handling and stability. Differential gears play a key role in optimizing traction. In situations where one wheel encounters reduced traction, such as on slippery surfaces or during cornering, the differential allows the wheel with better traction to receive more power. This torque distribution helps maximize the vehicle’s ability to maintain forward motion and improves overall stability by minimizing wheel slip.
4. Improved Steering Response:
The differential gear contributes to improved steering response, which is essential for handling and stability. By allowing the wheels to rotate independently, the differential enhances the vehicle’s ability to respond to steering inputs. It enables precise and controlled turning, allowing the driver to navigate corners and curves with better accuracy and confidence.
5. Balanced Weight Distribution:
Proper weight distribution is critical for optimal handling and stability. The differential gear helps maintain balanced weight distribution among the wheels. During turns, the weight of the vehicle shifts towards the outside wheels. The differential allows the outer wheel to rotate faster, accommodating this weight transfer and promoting stability. By ensuring balanced weight distribution, the differential contributes to predictable and controlled handling.
6. Prevention of Wheel Hop:
Wheel hop, which refers to the rapid up-and-down movement of the wheels during acceleration or on uneven surfaces, can negatively impact stability and handling. The differential gear helps prevent wheel hop by allowing the wheels to rotate at different speeds. This flexibility in wheel rotation reduces the likelihood of wheel hop, improving stability and maintaining better traction on the road.
In summary, differential gears contribute significantly to handling and stability in vehicles. They enable independent wheel rotation, balance power distribution, optimize traction, improve steering response, maintain balanced weight distribution, and prevent wheel hop. By facilitating smooth and controlled handling, the differential gear enhances the overall stability and performance of vehicles.
editor by CX 2023-10-07