China Standard Worm Screw Jack Lift Gearbox Worm Gear Screw Jack Lifter Mechanical Jack cycle gear

Product Description

1.Convenient to adjust
2.Wide range of ratio
3.Easy to install
4.high torque
Application Industries:
Our SWL series screw jacks are widely used in the industries such as metallurgy,mining,hoisting and transportation, electrical
power,energy source,constrction and building material,light industry and traffice industry

Product Parameters

Type

Model

Screw thread size

Max
lifting strength
kN

Max
pull force
kN

Weight without stroke
kg

Screw weight
per 100mm

SWL

Screw jack

SWL2.5

Tr30*6

25

25

7.3

0.45

SWL5

Tr40*7

50

50

16.2

0.82

SWL10/15

Tr58*12

100/150

99

25

1.67

SWL20

Tr65*12

200

166

36

2.15

SWL25

Tr90*16

250

250

70.5

4.15

SWL35

Tr100*18

350

350

87

5.20

SWL50

Tr120*20

500

500

420

7.45

SWL100

Tr160*23

1000

1000

1571

13.6

SWL120

Tr180*25

1200

1200

1350

17.3

1.Compact structure,Small size.Easy mounting,varied types.  Can be applied in 1 unit or multiple units.

2.High reliability.Long service life; With the function of   ascending,descending,thrusting,overturning

3.Wide motivity.It can be drived by  electrical motor and manual force.

4.It is usually used in low speed situation,widely used in the fields of
metallurgy,mechanical,construction,chemical,irrigation works,mediat treatment.

Detailed Photos

 

1. screw rod

2. nut bolt

3. cover

4.Skeleton oil seal

5.Bearing

6.Worm gear

7.Oil filling hole

8.Case

9.Skeleton oil seal

10.Cover

11. nut bolt

12.Bearing

13.Skeleton oil seal

14.Bearing

15.worm

16.Flat key

17.Bearing

18.Skeleton oil seal

19.Cover

20.Nut bolt

Product Description

 

Packaging & Shipping

 

Company Profile

 

Standard or Nonstandard: Nonstandard
Application: Textile Machinery, Garment Machinery, Conveyer Equipment, Electric Cars, Motorcycle, Food Machinery, Marine, Mining Equipment, Agricultural Machinery, Car, Power Transmission, Automatic Equipment
Ratio: 6-36
Product Name: Swl Series Worm Gear Lift
Color: Green or Blue or Customized
Applicable Industries: Hotels, Manufacturing Plant, Food & Beverage Facto
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

screw gear

How do you install a screw gear system?

Installing a screw gear system, also known as a worm gear system, requires careful consideration and precise execution. Here’s a detailed explanation of the steps involved in installing a screw gear system:

  1. Design and Selection: Before installation, it is crucial to design and select the appropriate screw gear system for the specific application. Consider factors such as required torque, speed, load capacity, gear ratio, and environmental conditions. Choose a screw gear system that matches the application’s requirements and ensure compatibility with other components and machinery.
  2. Prepare the Components: Gather all the necessary components for the screw gear system installation, including the worm gear, worm wheel, bearings, shafts, and any additional accessories or support structures. Inspect the components for any damage or defects and ensure they are clean and properly lubricated.
  3. Mounting the Worm Gear: Begin the installation by mounting the worm gear. Securely attach the worm gear to the appropriate shaft or motor using suitable fasteners. Ensure that the alignment of the worm gear is accurate, and it is properly centered on the shaft to avoid any misalignment issues during operation.
  4. Mounting the Worm Wheel: Once the worm gear is in place, mount the worm wheel. The worm wheel should be positioned in such a way that it meshes smoothly with the worm gear. Ensure that the worm wheel is securely mounted, and any necessary bearings or supports are properly installed to maintain stability and alignment.
  5. Alignment and Adjustment: Proper alignment of the screw gear system is crucial for its efficient operation. Ensure that the worm gear and worm wheel are correctly aligned both axially and radially. Check for any excessive play or binding in the system. Make necessary adjustments to achieve optimal alignment and smooth meshing between the gears.
  6. Lubrication: Apply the recommended lubricant to the screw gear system. Proper lubrication is essential to minimize friction and wear, ensuring smooth operation and extending the system’s lifespan. Follow the manufacturer’s guidelines regarding the type and amount of lubricant to use.
  7. Testing and Fine-Tuning: After installation, perform thorough testing of the screw gear system. Check for smooth operation, proper engagement between the gears, and any abnormal noise or vibration. Fine-tune the system if necessary, making adjustments to achieve the desired performance and ensure optimal functionality.
  8. Regular Inspection and Maintenance: Once the screw gear system is installed and operational, it is important to establish a regular inspection and maintenance schedule. Regularly inspect the system for signs of wear, lubrication levels, and any potential issues. Perform routine maintenance tasks such as cleaning, lubrication replenishment, and component replacement as needed.

It is crucial to follow the manufacturer’s guidelines and specifications during the installation process. If unsure about any aspect of the installation, consult with experts or refer to the manufacturer’s documentation for detailed instructions specific to the screw gear system being installed.

screw gear

Can screw gears be used in both vertical and horizontal orientations?

Yes, screw gears, also known as worm gears, can be used in both vertical and horizontal orientations. The suitability of screw gears for a particular orientation depends on several factors. Here’s a detailed explanation of using screw gears in vertical and horizontal orientations:

Vertical Orientation:

Screw gears can be used in vertical orientations, such as when the worm gear is positioned vertically above or below the worm wheel. However, there are some considerations to keep in mind:

  • Self-Locking Capability: One advantage of screw gears is their self-locking capability, which means they can hold position without additional braking mechanisms. In vertical orientations, this self-locking feature can be beneficial, especially when the load needs to be held in position without the need for external support or brakes.
  • Lubrication: Proper lubrication is crucial in vertical screw gear applications to ensure efficient power transmission and minimize wear. Gravity can affect lubricant distribution, so it is essential to use lubricants with appropriate viscosity and ensure adequate lubrication reaches all gear surfaces even in a vertical configuration.
  • Load and Torque: The weight of the load being transmitted through the screw gear system is an important consideration in vertical orientations. Vertical applications often involve lifting or supporting heavy loads, and the torque requirements can be high. It is important to ensure that the screw gear system is designed to handle the specific load and torque demands of the vertical application.

Horizontal Orientation:

Screw gears can also be used in horizontal orientations, where the worm gear and worm wheel are positioned parallel to the ground. Here are some considerations for using screw gears in horizontal orientations:

  • Lubrication: Proper lubrication is still important in horizontal screw gear applications to minimize friction, wear, and heat generation. The lubricant viscosity and type should be chosen to provide adequate film thickness and reduce sliding friction between the gear surfaces.
  • Efficiency: Screw gears generally have lower mechanical efficiency compared to some other gear types. In horizontal orientations, where efficiency is critical for power transmission, it is important to consider the gear design and material selection to minimize energy losses and maximize the overall system efficiency.
  • Load Distribution: In horizontal orientations, the load distribution between the worm gear and the worm wheel is typically more uniform compared to vertical orientations. This can help reduce tooth stresses and increase the overall stability of the gear system.
  • Mounting and Support: Proper mounting and support of the screw gear system are important in horizontal orientations to ensure alignment and minimize vibrations. Adequate support structures, such as rigid bases or frames, should be used to maintain the gear system’s stability and integrity.

In summary, screw gears can be used in both vertical and horizontal orientations. However, the specific application requirements, including load, torque, lubrication, and efficiency considerations, should be carefully evaluated to ensure the screw gear system is suitable and designed to meet the demands of the particular orientation.

screw gear

How do screw gears contribute to linear motion and power transmission?

Screw gears, also known as worm gears, play a significant role in achieving linear motion and power transmission in various mechanical systems. Here’s a detailed explanation of how screw gears contribute to these functions:

Linear Motion:

Screw gears can convert rotary motion into linear motion or vice versa through the interaction between the worm and the worm wheel. The helical threads on the worm and the teeth on the worm wheel create a sliding and rolling contact that results in linear displacement along the axis of the screw. This mechanism enables precise control and positioning of linear motion in different applications.

The linear motion contribution of screw gears can be observed in the following scenarios:

  • Lead Screw Mechanisms: When the worm gear is used as a lead screw, it converts the rotary motion of the worm into linear motion along the screw’s axis. By rotating the worm, the worm wheel moves linearly, allowing for controlled and precise linear positioning. Lead screw mechanisms are widely used in applications such as CNC machines, 3D printers, and linear actuators.
  • Linear Motion Conversion: In certain applications, the linear motion of a load can be converted into rotary motion using screw gears. By fixing the worm wheel and applying linear force to the worm, the rotation of the worm can drive the rotary motion of other components. This conversion is utilized in applications such as conveyor systems, lifting mechanisms, and material handling equipment.

Power Transmission:

Screw gears are effective in power transmission due to their unique characteristics. Here’s how they contribute to power transmission:

  • Gear Reduction: Screw gears provide significant gear reduction, which is the ratio between the input speed and the output speed. This reduction allows for a smaller input speed to generate a larger output torque, making screw gears suitable for applications requiring high torque and low-speed rotation. The gear reduction capability of screw gears enables efficient power transmission, especially in scenarios where high torque is necessary.
  • Torque Multiplication: Through the interaction of the helical threads on the worm and the teeth on the worm wheel, screw gears multiply torque. The mechanical advantage gained through the screw gear mechanism enables the transmission of higher torque to drive loads with increased force. This torque multiplication is essential in applications that require heavy lifting, load handling, and power transmission with minimal slippage.

By combining the ability to convert rotary motion into linear motion and providing efficient power transmission, screw gears find widespread use in a range of applications. They are employed in industries such as manufacturing, automation, robotics, material handling, and various other systems that require precise linear motion control and effective power transmission.

China Standard Worm Screw Jack Lift Gearbox Worm Gear Screw Jack Lifter Mechanical Jack cycle gearChina Standard Worm Screw Jack Lift Gearbox Worm Gear Screw Jack Lifter Mechanical Jack cycle gear
editor by CX 2023-09-04