China supplier OEM PP/PC/PE/ABS/PVC/PS/Nylon Plastic Injection Molding Helical Gear for Auto Parts spurs gear

Product Description

COMPANY INTRODUCTION

HangZhou Worth Engineering Technology Co., Ltd. founded in 2001 , Company is located in the Chinese ancient city — HangZhou. Our company has been engaged in producing custom made engineering accessories, OEM/ODM spare parts and industrial components for many years, including CHINAMFG parts and investment casting spare parts, forging parts, sheet metal stamping spare parts, machined parts and plastic parts, which are widely used in petrochemical, automobile, chemical, environmental protection , machinery, construction, agriculture, aerospace, marine hardware and other industries.
 

PE/PVC/ABS/PU/EPDM/NYLON/SILICONE PLASTIC INJECTION OR VACUUM FORMING AUTO SPARE PARTS

 

Model NO.:As per customer required

Material:NBR/FKM/Viton/Silicone/HNBR/EPDM/PP/PU/PVC/ABS/NYLON etc

Application:Machinery, Industrial Component, Electronic Product, Vehicle, Household Appliance Cross-Section Shape:Customized

Size:Customized

Color:Black,Red,Grey,Brown,Coffee etc

Workmanship:Plastic Injection Moulding/Vacumm Forming/Blow Molding

Surface:Smooth, Matt Finish, Glossy, as You Requirements

Working Temperature:-40~230 Celsius Degree

OEM/ODM:Customized

Performance:High Pressure

Eco-Friendly:Non-Tonix Mold Rubber Products

Function:Oil Prevention Sealing; Water Prevention Sealin

Trademark: NBR/FKM/Viton/Silicone/HNBR/EPDM/PP/PU/PVC/ABS/NYLON

Specification:ISO9001: 2015; TS16949; SGS

COMPANY EQUIPMENTS

TESTING EQUIPMENTS

THE PACKAGE AND SHIPMENT

CUSTOMERS
 

FAQ

 

Q1. How to customize products?                                                                                                
A2: Attach your drawings with details (material, surface treatment, quantity and special requirements etc).    

Q2: Can you make the parts based on the sample?
A3: Yes, we could provide a rough cost and will measure and design the drawing according your sample.

Q3: Can my design be safe after sending it to you?
A5: We can CHINAMFG the NDA before you send it.
                                                                                                                                                                                                   
Q4. How long will it take to get the quotation?                                                                       
A6: We will give you the quotation within 24 hours (Considering the time difference).    
         
Q5. How does the company control the quality?                                                                  
A7: Inspection product with professional equipment , like CMM, height gauge, caliper & micrometer,quadratic equipment .

 

Shaping Mode: Injection Mould
Surface Finish Process: Mirror Polishing
Mould Cavity: Multi Cavity
Plastic Material: PA66+GF
Process Combination Type: Single-Process Mode
Application: Car, Furniture, Electronic, Hardware
Customization:
Available

|

Customized Request

plastic gear

What are the limitations of using plastic gears in industrial settings?

Using plastic gears in industrial settings has certain limitations. Here’s a detailed explanation of these limitations:

  • Lower Load Capacity: Plastic gears generally have lower load-bearing capacities compared to metal gears. They are more susceptible to deformation and wear under heavy loads or high torque conditions. This makes them less suitable for applications that require withstanding substantial forces or transmitting high power.
  • Temperature Sensitivity: Plastic gears have temperature limitations, and their performance can be affected by temperature variations. Some plastic materials may experience dimensional changes, loss of strength, or reduced stiffness at elevated temperatures. Additionally, high temperatures can accelerate wear and reduce the lifespan of plastic gears. Therefore, plastic gears may not be suitable for applications that involve high-temperature environments or extreme temperature fluctuations.
  • Environmental Sensitivity: Plastic gears can be sensitive to certain environmental conditions. Certain plastic materials may degrade or become brittle when exposed to specific chemicals, solvents, oils, or UV radiation. This restricts their use in applications where exposure to harsh chemicals, lubricants, or outdoor elements is common.
  • Wear and Abrasion: While plastic gears can offer good wear resistance, they are generally more prone to wear and abrasion compared to metal gears. Under heavy-load or high-speed conditions, the surface of plastic gears can wear down, leading to a decrease in performance and potential failure over time. Additional measures, such as incorporating reinforcements or using lubrication, may be necessary to mitigate wear in certain applications.
  • Dimensional Stability: Plastic materials can have lower dimensional stability compared to metals. They may experience creep, shrinkage, or expansion over time, which can affect the accuracy and reliability of gear operation, particularly in applications with tight tolerances or precise gear meshing requirements.
  • Impact Resistance: Plastic gears may have limited impact resistance compared to metal gears. They can be more susceptible to damage or fracture when subjected to sudden impact or shock loads. This makes them less suitable for applications with high impact or heavy-duty requirements.
  • Compatibility with Existing Systems: In some cases, replacing metal gears with plastic gears may require modifications to the existing system. Plastic gears may have different dimensions, mounting requirements, or gear ratios compared to metal gears, necessitating design changes or adaptations to accommodate the use of plastic gears.

Despite these limitations, plastic gears can still offer significant advantages in certain industrial settings, such as reduced weight, noise reduction, and cost-effectiveness. It’s crucial to carefully evaluate the specific application requirements and consider the trade-offs between the benefits and limitations of plastic gears when deciding whether they are suitable for a particular industrial setting.

plastic gear

What is the impact of temperature variations on plastic gears?

Temperature variations can have a significant impact on plastic gears. Here’s a detailed explanation of their effects:

1. Thermal Expansion: Plastic gears can experience thermal expansion or contraction with changes in temperature. Different types of plastics have varying coefficients of thermal expansion, meaning they expand or contract at different rates. This can result in dimensional changes, which may affect the gear’s meshing, clearance, and overall performance. It’s important to consider the thermal expansion characteristics of the specific plastic material used in the gear design.

2. Material Softening or Hardening: Plastic materials can exhibit changes in mechanical properties with temperature variations. In general, as temperature increases, plastic materials tend to soften and become more flexible, while at lower temperatures, they can become stiffer and more brittle. These changes can impact the gear’s load-bearing capacity, wear resistance, and overall durability. It’s crucial to select plastic materials that can maintain their mechanical integrity within the expected temperature range of the application.

3. Dimensional Stability: Plastic gears may experience dimensional changes or warping due to temperature fluctuations. Higher temperatures can cause plastic materials to deform, leading to misalignment, increased backlash, or reduced gear accuracy. Conversely, lower temperatures can cause contraction, resulting in tight clearances, increased friction, or gear binding. Proper design considerations, including material selection and gear geometry, can help mitigate the impact of temperature-induced dimensional changes.

4. Lubrication and Wear: Temperature variations can affect the lubrication properties of plastic gears. Higher temperatures can cause lubricants to degrade or become less effective, leading to increased friction, wear, and potential gear failure. Similarly, low temperatures can cause lubricants to thicken or solidify, hindering proper lubrication and increasing wear. Selecting lubricants suitable for the anticipated temperature range and periodic maintenance can help ensure proper lubrication and minimize wear on plastic gears.

5. Cold Flow and Creep: Some plastic materials, especially those with lower glass transition temperatures, may exhibit cold flow or creep at elevated temperatures. Cold flow refers to the gradual deformation or flow of plastic material under constant stress, while creep refers to the time-dependent deformation under a constant load. These phenomena can cause changes in gear geometry, tooth profile, or tooth engagement over time, potentially affecting gear performance and functionality. Understanding the material’s creep and cold flow characteristics is important when selecting plastic gears for applications exposed to temperature variations.

6. Impact on Lubricants and Seals: Temperature variations can also impact the performance of lubricants and seals used in gear systems. Extreme temperatures can cause lubricants to break down, lose viscosity, or leak from the gear assembly. Seals and gaskets may also be affected, leading to compromised gear housing integrity or increased friction. It’s crucial to consider temperature compatibility and select appropriate lubricants and seals that can withstand the anticipated temperature range.

In summary, temperature variations can significantly impact plastic gears by causing thermal expansion, material softening or hardening, dimensional changes, lubrication issues, cold flow or creep, and effects on lubricants and seals. Proper material selection, design considerations, and understanding the anticipated temperature range are essential to ensure the reliable and optimal performance of plastic gears in various applications.

plastic gear

Are there different types of plastic materials used for making gears?

Yes, there are different types of plastic materials used for making gears. Here’s a detailed explanation of some commonly used plastic materials in gear manufacturing:

  • Acetal (Polyoxymethylene – POM): Acetal is a popular choice for gear applications due to its excellent strength, dimensional stability, low friction, and wear resistance. It has good machinability and can be easily molded into gears with precise tooth profiles. Acetal gears offer low noise operation and have good resistance to moisture and chemicals. They are commonly used in automotive, consumer electronics, and industrial applications.
  • Polyamide (Nylon): Polyamide or nylon is another widely used plastic material for gears. It offers good mechanical properties, including high strength, toughness, and impact resistance. Nylon gears have low friction characteristics, good wear resistance, and self-lubricating properties. They are commonly used in applications such as automotive components, power tools, and industrial machinery.
  • Polyethylene (PE): Polyethylene is a versatile plastic material that can be used for gear applications. It offers good chemical resistance, low friction, and excellent electrical insulation properties. While polyethylene gears may have lower strength compared to other plastic materials, they are suitable for low-load and low-speed applications, such as in light-duty machinery, toys, and household appliances.
  • Polypropylene (PP): Polypropylene is a lightweight and cost-effective plastic material that finds applications in gear manufacturing. It offers good chemical resistance, low friction, and low moisture absorption. Polypropylene gears are commonly used in various industries, including automotive, consumer electronics, and household appliances.
  • Polycarbonate (PC): Polycarbonate is a durable and impact-resistant plastic material used for gears that require high strength and toughness. It offers excellent dimensional stability, transparency, and good resistance to heat and chemicals. Polycarbonate gears are commonly used in applications such as automotive components, electrical equipment, and machinery.
  • Polyphenylene Sulfide (PPS): Polyphenylene sulfide is a high-performance plastic material known for its excellent mechanical properties, including high strength, stiffness, and heat resistance. PPS gears offer low friction, good wear resistance, and dimensional stability. They are commonly used in demanding applications such as automotive transmissions, industrial machinery, and aerospace equipment.

These are just a few examples of the plastic materials used for making gears. The choice of plastic material depends on the specific requirements of the gear application, including load capacity, operating conditions, temperature range, chemical exposure, and cost considerations. It’s important to select a plastic material that offers the necessary combination of mechanical properties and performance characteristics for optimal gear performance.

China supplier OEM PP/PC/PE/ABS/PVC/PS/Nylon Plastic Injection Molding Helical Gear for Auto Parts spurs gearChina supplier OEM PP/PC/PE/ABS/PVC/PS/Nylon Plastic Injection Molding Helical Gear for Auto Parts spurs gear
editor by CX 2023-09-28