China wholesaler Positive Worm Helical Hypoid Bevel Gear / Bevel Gear / Herringbone Gear for Industrial Machinery with Best Sales

Product Description

1) According to the different strength and performance, we choose the steel with strong compression;
2) Using Germany professional software and our professional engineers to design products with more reasonable size and better performance; 3) We can customize our products according to the needs of our customers,Therefore, the optimal performance of the gear can be exerted under different working conditions;
4) Quality assurance in every step to ensure product quality is controllable.

Product Paramenters
 

DRIVEN GEAR

NUMBER OF TEETH

18

MODULE

11.111

LENTH

   302

OUTER DIAMETER

ø210

DIRECTION OF SPIRAL

L

ACCURACY OF SPLINE

M55*1.5-6h

NUMBER OF SPLINE

31

DRIVEN GEAR

NUMBER OF TEETH

27

OUTER DIAMETER

ø3 square meter, with building area of 72,000 square meters. More than 500 employees work in our company.
 We own more than 560 high-precise machining equipments, 10 Klingelnberg Oerlikon gear production lines, 36 Gleason gear production lines, 5 forging production lines 2 german Aichilin and 5 CHINAMFG CHINAMFG advanced automatic continuous heat treatment production lines. With the introducing the advanced Oerlikon C50 and P65 measuring center, we enhence our technology level and improve our product quality a lot. We offer better quality  and good after-sale service with low price, which insure the good reputation. With the concept of “for the people, by technology, creativity, for the society, transfering friendship, honest”, we are trying to provice the world-top level product.
Our aim is: CHINAMFG Gear,world class, Drive the world.
According to the different strength and performance, we choose the steel with strong compression;Using Germany professional software and our professional engineers to design products with more reasonable size and better performance;We can customize our products according to the needs of our customers,Therefore, the optimal performance of the gear can be exerted under different working conditions;Quality assurance in every step to ensure product quality is controllable.
Our company had full quality management system and had been certified by ISO9001:2000, QS-9000:1998, ISO/TS16949 , which insure the entrance of international market.

Certification & honors

Packaging & Shipping

Packaging Detail:standard package(carton ,wooden pallet).
Shipping:Support Sea freight. Accept FOB,EXW,FAS,DES. 

 

Cooperative customers

HangZhou CHINAMFG Gear Co., Ltd. adheres to the concept of “people-oriented, prosper with science and technology; create high-quality products, contribute to the society; turn friendship, and contribute sincerely”, and will strive to create world automotive axle spiral bevel gear products.


1.Do you provide samples?
Yes,we can offer free sample but not pay the cost of freight.
2.What about OEM?
Yes,we can do OEM according to your requirements.
3.How about after-sales service?
We have excellent after-sales service if you have any quanlity problem,you can contact us anytime.
4.What about package?
Stardard package or customized package as requirements.
5.How to ensure the quanlity of the products?
We can provide raw meterial report,metallographic examination and the accuracy testing etc.
6.How long is your delivery time?
Genarally it is 4-7 days.If customized it will be take 20 days according to your quantity. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Gear Position: External Gear
Manufacturing Method: Cast Gear
Toothed Portion Shape: Herringbone Gear
Material: Cast Steel
Samples:
US$ 100/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

herringbone gear

How do you choose the right size herringbone gear for your application?

Choosing the right size herringbone gear for your application involves considering several factors and performing engineering calculations. Here’s a detailed explanation of the steps involved in selecting the appropriate size herringbone gear:

  1. Determine the Application Requirements: Start by understanding the specific requirements of your application. Consider factors such as the input and output speeds, torque loads, power requirements, duty cycle, and operating conditions. Determine the desired service life, efficiency, and reliability expectations for the gear system.
  2. Calculate the Gear Ratios: Determine the required gear ratios based on the speed and torque requirements of your application. Gear ratios define the relationship between the rotational speeds and torques of the input and output shafts. Select appropriate gear ratios that fulfill the desired performance objectives.
  3. Calculate the Load and Torque: Estimate the maximum load and torque that the herringbone gear will experience during operation. Consider both static and dynamic loads, shock loads, and any potential overload conditions. Calculate the required torque capacity of the gear system based on these load considerations.
  4. Consider the Size and Space Constraints: Evaluate the available space and size constraints in your application. Measure the available distance for gear installation, including the gear’s diameter, width, and axial length. Consider any restrictions on the gear’s physical dimensions and ensure that the selected gear size fits within the available space.
  5. Determine the Gear Module: The gear module is a parameter that defines the size and number of gear teeth. Calculate the gear module based on the desired gear ratios, torque capacity, and available space. The gear module is typically determined by considering a balance between gear tooth strength, contact ratio, and manufacturing feasibility.
  6. Perform Gear Design Calculations: Utilize standard gear design formulas and calculations to determine the required number of gear teeth, pitch diameter, helix angles, and other gear dimensions. Consider factors such as gear tooth strength, contact ratio, tooth profile optimization, and gear manufacturing standards. These calculations ensure that the selected gear size can handle the anticipated loads and provide reliable performance.
  7. Consult Manufacturers and Standards: Consult gear manufacturers, industry standards, and guidelines to ensure compliance with best practices and safety requirements. Manufacturers can provide technical expertise, recommend suitable gear sizes, and offer guidance on material selection, heat treatment processes, and gear quality standards.
  8. Consider Cost and Availability: Evaluate the cost implications and availability of the selected gear size. Consider factors such as material costs, manufacturing complexity, lead times, and the overall economic feasibility of the gear system. Balance the desired performance with cost considerations to arrive at an optimal gear size.

It’s important to note that selecting the right size herringbone gear requires expertise in gear design and engineering. If you lack the necessary knowledge, it is advisable to consult with experienced gear engineers or manufacturers who can assist in the selection process.

In summary, choosing the right size herringbone gear involves determining the application requirements, calculating gear ratios and torque loads, considering size constraints, determining the gear module, performing gear design calculations, consulting manufacturers and standards, and considering cost and availability. Following these steps ensures that the selected herringbone gear size meets the specific needs of your application and provides reliable and efficient operation.

herringbone gear

What lubrication is required for herringbone gears?

Proper lubrication is essential for the smooth and efficient operation of herringbone gears. The lubricant used in herringbone gear systems plays a crucial role in reducing friction, minimizing wear, dissipating heat, and protecting the gear surfaces. Here’s a detailed explanation of the lubrication requirements for herringbone gears:

  • Lubricant Selection: When selecting a lubricant for herringbone gears, it is important to consider factors such as load, speed, operating temperature, and environmental conditions. The lubricant should have suitable viscosity and additives to provide adequate film thickness and maintain lubrication under the anticipated operating conditions. Commonly used lubricants for herringbone gears include mineral oils, synthetic oils, and specialty lubricants formulated for gear applications.
  • Viscosity: The viscosity of the lubricant is crucial for ensuring proper lubrication and film formation between the gear teeth. The lubricant should have sufficient viscosity to create an effective lubricating film that separates the gear surfaces and reduces friction. It should be able to maintain this film under the operating conditions, ensuring smooth gear engagement and minimizing wear. The appropriate viscosity grade is typically specified by the gear system manufacturer based on the gear design, load, and speed.
  • Lubricant Application: The lubricant should be applied to the gear system in the appropriate manner to ensure uniform coverage and distribution. In most cases, herringbone gears are lubricated by immersion or splash lubrication, where the gears partially or fully submerge in the lubricant or have the lubricant splashed onto their surfaces. The lubricant should be directed towards the gear meshing area to ensure proper lubrication of the gear teeth and contact surfaces.
  • Lubricant Maintenance: Regular lubricant maintenance is essential to ensure the continued performance and longevity of herringbone gears. This includes monitoring the lubricant condition, checking for contamination, and replenishing or replacing the lubricant as necessary. Over time, the lubricant may degrade, become contaminated with particles or moisture, or lose its effectiveness. Regular inspections and lubricant analysis can help identify any issues and determine the appropriate maintenance intervals for lubricant replacement or replenishment.
  • Sealing and Contamination Prevention: Proper sealing of the gear housing or enclosure is important to prevent the ingress of contaminants, such as dust, dirt, or moisture, into the gear system. Contaminants can degrade the lubricant and lead to increased wear and damage to the gear surfaces. Seals, gaskets, or other appropriate sealing mechanisms should be employed to minimize the risk of contamination and maintain the integrity of the lubricant.

It is important to consult the gear system manufacturer’s recommendations and specifications regarding lubrication requirements. The manufacturer may provide specific guidelines regarding lubricant type, viscosity, application methods, and maintenance procedures based on the gear design and intended operating conditions. Adhering to these guidelines will help ensure optimal lubrication and maximize the performance and service life of herringbone gears.

herringbone gear

What industries commonly use herringbone gears?

Herringbone gears, also known as double helical gears, are utilized in various industries due to their unique design and advantageous characteristics. Here’s a detailed explanation of the industries that commonly use herringbone gears:

  • Power Generation and Transmission: Herringbone gears find extensive use in power generation and transmission systems. They are employed in gearboxes, drivetrains, and speed reducers that are essential components in power plants, including thermal power plants, hydroelectric power plants, and wind farms. Herringbone gears provide efficient torque transfer and smooth operation, making them suitable for power generation applications.
  • Heavy Machinery and Equipment: Herringbone gears are widely employed in heavy machinery and equipment across different industries. Applications include construction machinery, mining equipment, industrial machinery, and material handling systems. These gears can handle high loads and provide reliable torque transmission, making them suitable for heavy-duty operations.
  • Oil and Gas Industry: The oil and gas industry extensively utilizes herringbone gears in various equipment. They are found in pumps, compressors, turbines, and other machinery used in oil refineries, petrochemical plants, and offshore platforms. Herringbone gears are capable of handling high torque requirements and provide reliable performance in demanding and critical environments.
  • Marine and Shipbuilding: Herringbone gears are widely used in marine propulsion systems, including ship propulsion drives and propeller shaft arrangements. They are also found in other marine equipment, such as winches, cranes, and offshore drilling rigs. Herringbone gears facilitate efficient power transfer and contribute to the smooth and reliable operation of marine vessels.
  • Aerospace and Aviation: Herringbone gears are employed in aerospace and aviation applications where high-speed and high-torque transmission is required. They are used in aircraft engines, landing gear systems, and helicopter transmissions. Herringbone gears contribute to the efficient and reliable performance of aerospace and aviation systems.
  • Automotive and Transportation: Herringbone gears are utilized in various automotive applications that require high torque and smooth power transmission. They are found in automotive transmissions, differential gears, and drivetrain systems. Herringbone gears enable efficient power transfer and contribute to the overall performance and reliability of vehicles.
  • Printing and Packaging: Herringbone gears are commonly used in printing presses and packaging machinery. They are employed in the transmission systems that drive the rollers, cylinders, and cutting mechanisms, ensuring precise and synchronized operation. Herringbone gears’ noise-canceling properties and smooth engagement make them desirable in printing and packaging applications that require high precision and quality.
  • Steel and Metalworking: Herringbone gears are utilized in steel mills and metalworking machinery. They are found in rolling mills, extruders, forge presses, and other equipment involved in metal processing and shaping. Herringbone gears withstand the high loads, vibrations, and harsh operating conditions commonly encountered in steel and metalworking industries.
  • Railway and Transportation Systems: Herringbone gears are employed in railway systems, particularly in locomotives and rolling stock. They are used in propulsion systems, gearboxes, and drivetrains, ensuring efficient power transmission and reliable train operation. Herringbone gears contribute to the smooth and safe movement of trains.

These are just a few examples of the industries that commonly use herringbone gears. Their unique tooth design, load-carrying capacity, bidirectional power transmission capability, and smooth operation make them suitable for a wide range of industrial applications that require efficient and reliable torque transmission.

China wholesaler Positive Worm Helical Hypoid Bevel Gear / Bevel Gear / Herringbone Gear for Industrial Machinery with Best SalesChina wholesaler Positive Worm Helical Hypoid Bevel Gear / Bevel Gear / Herringbone Gear for Industrial Machinery with Best Sales
editor by Dream 2024-04-19